forked from x-datascience-datacamp/2023-assignment-pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pandas_questions.py
116 lines (94 loc) · 3.91 KB
/
test_pandas_questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import pandas as pd
import geopandas as gpd
from pandas_questions import load_data
from pandas_questions import plot_referendum_map
from pandas_questions import merge_referendum_and_areas
from pandas_questions import merge_regions_and_departments
from pandas_questions import compute_referendum_result_by_regions
def test_load_data():
referendum, regions, departments = load_data()
df_ref = pd.read_csv('data/referendum.csv', sep=';')
assert set(referendum.columns) == set(df_ref.columns)
df_reg = pd.read_csv('data/regions.csv')
assert set(regions.columns) == set(df_reg.columns)
df_dep = pd.read_csv('data/departments.csv')
assert set(departments.columns) == set(df_dep.columns)
def test_merge_regions_and_departments():
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)
assert set(regions_and_departments.columns) == set([
'code_reg', 'name_reg', 'code_dep', 'name_dep'
])
assert regions_and_departments.shape == (109, 4)
def test_merge_referendum_and_area():
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)
referendum_and_areas = merge_referendum_and_areas(
referendum, regions_and_departments
)
# check that there is no missing values
assert referendum_and_areas.shape == referendum_and_areas.dropna().shape, (
"There should be no missing values in the DataFrame. Use dropna?"
)
assert set(referendum_and_areas.columns) == set([
'Department code', 'Department name', 'Town code', 'Town name',
'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B',
'code_dep', 'code_reg', 'name_reg', 'name_dep'
])
assert referendum_and_areas.shape == (36565, 13), (
"Shape of the DataFrame should be (36565, 13). "
"Check for mismatch in column formats."
)
def test_compute_referendum_result_by_regions():
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)
referendum_and_areas = merge_referendum_and_areas(
referendum, regions_and_departments
)
referendum_result_by_regions = compute_referendum_result_by_regions(
referendum_and_areas
)
# Check result shape
assert set(referendum_result_by_regions.columns) == set([
'name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B'
]), (
'To keep the name of the region, you can use either another merge or '
'a clever groupby.'
)
assert referendum_result_by_regions.shape == (13, 6)
# check that some of the values
referendum_result_by_regions = referendum_result_by_regions.set_index(
'name_reg'
)
assert referendum_result_by_regions['Registered'].sum() == 43_262_592
assert referendum_result_by_regions.loc[
'Normandie', 'Abstentions'] == 426_075
assert referendum_result_by_regions.loc[
'Grand Est', 'Choice A'] == 1_088_684
assert referendum_result_by_regions.loc['Occitanie', 'Null'] == 62_732
def test_plot_referendum_map():
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)
referendum_and_areas = merge_referendum_and_areas(
referendum, regions_and_departments
)
referendum_result_by_regions = compute_referendum_result_by_regions(
referendum_and_areas
)
gdf_referendum = plot_referendum_map(referendum_result_by_regions)
assert isinstance(gdf_referendum, gpd.GeoDataFrame), (
"The return object should be a GeoDataFrame, not a "
f"{type(gdf_referendum)}."
)
assert 'ratio' in gdf_referendum.columns
gdf_referendum = gdf_referendum.set_index('name_reg')
assert np.isclose(gdf_referendum['ratio'].loc['Normandie'], 0.427467)