coco/
thing_train2017/
# thing class label maps for auxiliary semantic loss
lvis/
thing_train/
# semantic labels for LVIS
Run python prepare_thing_sem_from_instance.py
, to extract semantic labels from instance annotations.
Run python prepare_thing_sem_from_lvis.py
, to extract semantic labels from LVIS annotations.
English pretrained data:
-
- Download (0.4G) (Origin, Google, BaiduNetDisk password: kgy7)
-
- Download (0.8G) (Origin, Google, BaiduNetDisk password: 7kvx)
-
MLT [paper].
- Download (6.8G) (Origin, Google, BaiduNetDisk password: zqrm)
-
CurvedSynText150k [paper]:
- Part1 (94,723) Download (15.8G) (Origin, Google, BaiduNetDisk password: 4k3x)
- Part2 (54,327) Download (9.7G) (Origin, Google, BaiduNetDisk password: a5f5)
Chinese pretrained data:
- ReCTs [Source]
- Download (1.7G) (Google, BaiduNetDisk password: wo3o)
- ReCTs test set [Source]
- Download (0.5G) (Google, BaiduNetDisk password: l1zy)
- LSVT [Source]
- Download (8.2G) (Google, BaiduNetDisk password: qv7k)
- ArT [Source]
- Download (1.5G) (Google, BaiduNetDisk password: ozht)
- SynChinese130k [Source]
- Download (25G) (Google, BaiduNetDisk password: zc3q)
text/
totaltext/
annotations/
train_images/
test_images/
mlt2017/
annotations/train.json
images/
...
syntext1/
syntext2/
...
evaluation/
gt_ctw1500.zip
gt_totaltext.zip
To evaluate on Total Text and CTW1500, first download the zipped annotations with
mkdir evaluation
cd evaluation
wget -O gt_ctw1500.zip https://cloudstor.aarnet.edu.au/plus/s/xU3yeM3GnidiSTr/download
wget -O gt_totaltext.zip https://cloudstor.aarnet.edu.au/plus/s/SFHvin8BLUM4cNd/download
pic/
thing_train/
# thing class label maps for auxiliary semantic loss
annotations/
train_person.json
val_person.json
image/
train/
...
First link the PIC_2.0 dataset to this folder with ln -s \path\to\PIC_2.0 pic
. Then use the python gen_coco_person.py
to generate train and validation annotation jsons.
Run python prepare_thing_sem_from_instance.py --dataset-name pic
, to extract semantic labels from instance annotations.