This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 213
how can i balance the model #73
Comments
can you share your test code?Thank you! @dgl547437235 |
@Johncheng1 ,由于是业务代码,所以不能共享,下面是我的逻辑,我训练的正样本集是A,测试的正样本集是B,测试的负样本集是C,我每训练一定的批次,就去计算在A上的最大编码距离,然后用该距离去测试B和C,超过最大编码距离则判定为NG |
好的,请问这个方法做出来的实际效果怎么样呢?
| |
王诚
|
|
邮箱:[email protected]
|
签名由 网易邮箱大师 定制
On 07/29/2020 12:24, NashString wrote:
@Johncheng1 ,由于是业务代码,所以不能共享,下面是我的逻辑,我训练的正样本集是A,测试的正样本集是B,测试的负样本集是C,我每训练一定的批次,就去计算在A上的最大编码距离,然后用该距离去测试B和C,超过最大编码距离则判定为NG
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub, or unsubscribe.
|
@ Johncheng1,效果不错,真阳率和真阴率可以同时达到100% |
请问自己建立的模型出现这种情况该如何处理:G模型的损失值在逐步下降,而D模型的损失值基本不怎么变换,且不能区分出正样本和负样本(正样本和负样本的距离值的分布基本吻合) |
@dgl547437235 你好,我想请教以下您这里用的最大编码距离是什么距离? |
@hqabcxyxz ,你好,我的最大编码距离是GNet在所有训练过的normal数据集上得出的,你可以试着把编码损失的权重增大,这么做可以有效提高异常样本的编码距离 |
Sign up for free
to subscribe to this conversation on GitHub.
Already have an account?
Sign in.
hi,samet-akcay,
thanks for your code,
i train my custom data,then i write my test code,the effect of detecting NG samples is great,but often recognize OK samples as NG,how can i solve the problem
The text was updated successfully, but these errors were encountered: