-
Notifications
You must be signed in to change notification settings - Fork 25
/
run.py
134 lines (118 loc) · 4.62 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import argparse
import torch
import numpy as np
from torchvision.utils import save_image
from main_settings import g_resolution_x, g_resolution_y
from models.encoder import EncoderCNN
from models.rendering import RenderingCNN
from dataloaders.loader import get_transform
import cv2
from utils import *
import pdb
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--im", default=None, required=False)
parser.add_argument("--bgr", default=None, required=False)
parser.add_argument("--video", default=None, required=False)
parser.add_argument("--steps", default=24, required=False)
parser.add_argument("--models", default='saved_models', required=False)
parser.add_argument("--output", default='output', required=False)
parser.add_argument("--median", default=7, required=False)
return parser.parse_args()
def main():
args = parse_args()
if not os.path.exists(args.output):
os.makedirs(args.output)
device = torch.device("cuda:{}".format(0) if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
encoder = EncoderCNN()
rendering = RenderingCNN()
if torch.cuda.is_available():
encoder.load_state_dict(torch.load(os.path.join(args.models, 'encoder_best.pt')))
rendering.load_state_dict(torch.load(os.path.join(args.models, 'rendering_best.pt')))
else:
encoder.load_state_dict(torch.load(os.path.join(args.models, 'encoder_best.pt'),map_location=torch.device('cpu')))
rendering.load_state_dict(torch.load(os.path.join(args.models, 'rendering_best.pt'),map_location=torch.device('cpu')))
encoder = encoder.to(device)
rendering = rendering.to(device)
encoder.train(False)
rendering.train(False)
if not args.im is None and not args.bgr is None:
I = imread(args.im)
B = imread(args.bgr)
tsr = run_defmo(I, B, rendering, encoder, args.steps, device)
## generate results
out = cv2.VideoWriter(os.path.join(args.output, 'tsr.avi'),cv2.VideoWriter_fourcc(*"MJPG"), 6, (I.shape[1], I.shape[0]),True)
for ki in range(args.steps):
imwrite(tsr[...,ki],os.path.join(args.output,'tsr{}.png'.format(ki)))
out.write( (tsr[:,:,[2,1,0],ki] * 255).astype(np.uint8) )
out.release()
elif not args.video is None:
## estimate initial background
Ims = []
cap = cv2.VideoCapture(args.video)
while cap.isOpened():
ret, frame = cap.read()
Ims.append(frame)
if len(Ims) >= args.median:
break
B = np.median(np.asarray(Ims)/255, 0)[:,:,[2,1,0]]
## run DeFMO
out = cv2.VideoWriter(os.path.join(args.output, 'tsr.avi'),cv2.VideoWriter_fourcc(*"MJPG"), 6, (B.shape[1], B.shape[0]),True)
tsr0 = None
frmi = 0
while cap.isOpened():
if frmi < args.median:
frame = Ims[frmi]
else:
ret, frame = cap.read()
if not ret:
break
Ims = Ims[1:]
Ims.append(frame)
## update background (running median)
B = np.median(np.asarray(Ims)/255, 0)[:,:,[2,1,0]]
frmi += 1
I = frame[:,:,[2,1,0]]/255
tsr = run_defmo(I, B, rendering, encoder, args.steps, device)
if frmi == 1:
tsr0 = tsr
continue
if frmi == 2:
forward = np.min([np.mean((tsr0[...,-1] - tsr[...,-1])**2), np.mean((tsr0[...,-1] - tsr[...,0])**2)])
backward = np.min([np.mean((tsr0[...,0] - tsr[...,-1])**2), np.mean((tsr0[...,0] - tsr[...,0])**2)])
if backward < forward:
## reverse time direction for better alignment
tsr0 = tsr0[...,::-1]
for ki in range(args.steps):
out.write( (tsr0[:,:,[2,1,0],ki] * 255).astype(np.uint8) )
if np.mean((tsr0[...,-1] - tsr[...,-1])**2) < np.mean((tsr0[...,-1] - tsr[...,0])**2):
## reverse time direction for better alignment
tsr = tsr[...,::-1]
for ki in range(args.steps):
out.write( (tsr[:,:,[2,1,0],ki] * 255).astype(np.uint8) )
tsr0 = tsr
cap.release()
out.release()
else:
print('You should either provide both --im and --bgr, or --video.')
def run_defmo(I, B, rendering, encoder, steps, device):
preprocess = get_transform()
bbox, radius = fmo_detect_maxarea(I,B,maxarea=0.03)
bbox = extend_bbox(bbox.copy(),4*np.max(radius),g_resolution_y/g_resolution_x,I.shape)
im_crop = crop_resize(I, bbox, (g_resolution_x, g_resolution_y))
bgr_crop = crop_resize(B, bbox, (g_resolution_x, g_resolution_y))
input_batch = torch.cat((preprocess(im_crop), preprocess(bgr_crop)), 0).to(device).unsqueeze(0).float()
with torch.no_grad():
latent = encoder(input_batch)
times = torch.linspace(0,1,steps).to(device)
renders = rendering(latent,times[None])
renders_rgba = renders[0].data.cpu().detach().numpy().transpose(2,3,1,0)
tsr_crop = rgba2hs(renders_rgba, bgr_crop)
tsr = rev_crop_resize(tsr_crop,bbox,B.copy())
tsr[tsr > 1] = 1
tsr[tsr < 0] = 0
return tsr
if __name__ == "__main__":
main()