forked from TraceyZhong/VWAP_py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VWAP.py
344 lines (272 loc) · 14.5 KB
/
VWAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import numpy as np
import pandas as pd
from datetime import datetime
from datetime import timedelta
import scipy.interpolate
from sklearn.linear_model import Lasso
from statsmodels.tsa.arima_model import ARMA
import warnings
from os import listdir
def cov(a,b):
a_mean = np.mean(a)
b_mean = np.mean(b)
sum = 0
for i in range(0,len(a)):
sum += (a[i] - a_mean)*(b[i] - b_mean)
return sum / (len(a) - 1)
def getL(y): # By linear regression predict the next value
x = np.array(range(0,len(y)))
b = cov(x,y) / cov(x,x)
a = np.mean(y) - b * np.mean(x)
return b * len(y) + a
def rolling_mean(a,n = 5):
x = [0.] * (len(a)-n + 1)
for i in range(n,len(a) + 1):
x[i - n] = a[i-n:i].mean()
return x
def rolling_linear(a, n = 5):
x = [0.] * (len(a)-n + 1)
for i in range(n , len(a)+ 1):
x[i - n] = getL(a[i-n:i])
return x
def get_log(r_vol,p_vol,p_per):
return {'r_vol':r_vol, 'p_vol':p_vol, 'p_per':p_per}
def datetime_range(T_START_TIME, T_END_TIME ,delta):
current = T_START_TIME
end = T_END_TIME
while current < end:
yield current
current += delta
class VWAP(object):
HALFTIME = timedelta(hours = 2)
def __init__(self, interval, ticker, today_for_test, kwargs):
'''
construct a new 'VWAP' object.
'''
if (interval % 5 != 0) or (7200 % interval != 0):
raise ValueError('interval must be a multiple of 5 secs and can divide 2 hours')
# check tradeID is valid
self.TODAY = kwargs['TODAY']
self.TODAY = datetime.strptime(today_for_test, "%Y-%m-%d") # Tracey to notice
# self.T_START_TIME = kwargs['T_START_TIME']
self.T_START_TIME = self.TODAY.replace(hour = 9, minute = 30, second = 0, microsecond = 0)
# self.T_END_TIME = kwargs['T_END_TIME']
self.T_END_TIME = self.TODAY.replace(hour = 15, minute = 00, second = 0, microsecond = 0)
self.LASSO_LAMBDA = kwargs['LASSO_LAMBDA']
self.N_TICK_THRESHOLD = kwargs['N_TICK_THRESHOLD']
self.DATA_PATH = kwargs['DATA_PATH'] + ticker
self.DATA_PATH = './data_path/' # Tracey to notice
self.files = set([ filename for filename in listdir(self.DATA_PATH) if filename.endswith( '.csv' ) ])
self.interval = interval
self.INTERVAL = timedelta(seconds = self.interval)
self.nINTERVAL = 2 * int(self.HALFTIME / self.INTERVAL)
self.pre_days = 0
self.features_to_train = np.ones((11,3),dtype=float) # CA, M, L, A
self.intraday_percentage = [1 / self.nINTERVAL] * self.nINTERVAL # notice .sum() =self.nINTERVAL
# self.AR_pars = np.array([1,0],dtype =float) # (u and phi)
self.AR_pars = [0., 1.]
self.trad_volume = np.full((10,self.nINTERVAL),0, dtype=float) # historical trading volume
self.CAtoday = 0.
self.predV = 0.
self.is_V_predicted = 0
self.last_update = 0
self.iter = 0
self.datetime_index = ( [str(dt) for dt in datetime_range(self.T_START_TIME,
self.T_START_TIME.replace(hour = 11, minute = 30, second = 0,
microsecond = 0),timedelta(seconds = self.interval))] +
[str(dt) for dt in datetime_range(self.T_START_TIME.replace(hour = 13,
minute = 0, second = 0, microsecond = 0),
self.T_END_TIME,timedelta(seconds = self.interval))])
self.today_vol = [0.] * self.nINTERVAL
self.predp = [0.] * self.nINTERVAL
self.predv = [0] * self.nINTERVAL
self.VWAP_log ={}
history_date = self.TODAY
x_output = np.append(np.arange(0 + self.interval , 7200 + self.interval, self.interval),
np.arange(12600 + self.interval,19800 + self.interval,self.interval))
iter = 1
# get data for intraday prediction
while iter < 11:
if not bool(self.files):
raise Exception('Insufficient historical data')
history_date = history_date - timedelta(days = 1)
self.pre_days += 1
if history_date.weekday() in set([5,6]):
continue
# filename = str(history_date.strftime('%Y-%m-%d'))+'.csv' ## Tracey to notice
filename = str(ticker) + str(history_date.strftime('%Y-%m-%d'))+'.csv' ## Tracey to notice
if filename in self.files:
self.files.remove(filename)
else:
continue
try:
dat = pd.read_csv(self.DATA_PATH+filename)
except Exception:
print('Error in reading ' + filename + ', go to the previous day.')
continue
if dat.shape[0] < self.N_TICK_THRESHOLD:
print('File ' + filename + ' has few data for prediction')
continue
print(filename + 'intra')
if self.pre_days > 20:
warnings.warn('Lack historical data. Time span of data for predicting intraday_volume of today has exceeded 20 days.')
try:
dat.columns = ['DateTime','Volume'] # there will be Microsecond
dat.DateTime = [datetime.strptime(str(history_date.strftime('%Y-%m-%d')) + ' ' + dt, "%Y-%m-%d %H:%M:%S") for dt in dat.DateTime]
# datetime to time difference
self.H_START_TIME = history_date.replace(hour = 9, minute = 30, second = 0, microsecond = 0)
dat['TimeStamp'] = [(dt - self.H_START_TIME).total_seconds() for dt in dat.DateTime]
dat = dat.as_matrix(columns = ['TimeStamp','Volume'])
datCA = dat[dat[:,0] < 0]
self.features_to_train[10 - iter,0] = datCA[:,1].sum()
dat = dat[dat[:,0] > 0]
# Tracey by reviewing the data from ctp finds it impossible
if any(t >= 198000 for t in dat[:,0]):
dat = np.vstack((dat[dat[:,0]<19800],[19800,dat[dat[:,0] >= 19800,1].sum()]))
dat[-1,0] = 198000
x_input = np.append(0, dat[:,0])
volume_cumsum = np.append(0,dat[:,1].cumsum())
y_interp = scipy.interpolate.interp1d(x_input,volume_cumsum) # ,interval)
intraday_volume = y_interp(x_output)
intraday_volume = np.append(intraday_volume[0],(intraday_volume[1:] - intraday_volume[:-1]))
self.trad_volume[10 - iter] = intraday_volume
except Exception:
print('Error when read file '+ filename + ', you may check its format')
continue
iter += 1
# print('Done'+str(iter))
iter = 11
# get data for roll_mean and roll_linear
volume_sums = np.zeros(5,dtype=float)
history_date = self.TODAY - timedelta(days = self.pre_days)
while iter < 16:
if not bool(self.files):
raise Exception('Insufficient historical data')
history_date = history_date - timedelta(days = 1)
self.pre_days += 1
if history_date.weekday() in set([5,6]):
continue
# filename = str(history_date.strftime('%Y-%m-%d'))+'.csv' ## Tracey to notice
filename = str(ticker) + str(history_date.strftime('%Y-%m-%d'))+'.csv' ## Tracey to notice
if filename in self.files:
self.files.remove(filename)
else:
continue
try:
dat = pd.read_csv(self.DATA_PATH+filename)
except Exception:
print('Error in reading ' + filename + ', go to the previous day.')
continue
# if dat.shape[0] < self.N_TICK_THRESHOLD:
# print('File ' + filename + ' has few data for prediction')
# continue
print(filename)
if self.pre_days > 30:
warnings.warn('Lack historical data. Time span of data for predicting total trading volume of today has exceeded 30 days.')
try:
dat = pd.read_csv(self.DATA_PATH+filename)
dat.columns = ['DateTime','Volume']
self.H_START_TIME = history_date.replace(hour = 9, minute = 30, second = 0, microsecond = 0)
dat.DateTime = [datetime.strptime(str(history_date.strftime('%Y-%m-%d')) + ' ' + dt,
"%Y-%m-%d %H:%M:%S") for dt in dat.DateTime]
volume_sums[15 - iter] = dat[dat.DateTime > self.H_START_TIME].Volume.sum()
except Exception:
print('Error when read file '+ filename + ', you may check its format')
continue
iter += 1
# preparing sample for predicting today's total volume
self.volume_to_train = self.trad_volume.sum(axis = 1)
volume_sums = np.append(volume_sums, self.volume_to_train)
self.features_to_train[:,1] = rolling_mean(volume_sums)
self.features_to_train[:,2] = rolling_linear(volume_sums)
# get intraday pattern and intialize intraday prediction
intraday_mean = self.trad_volume.mean(axis = 0)
self.predv[0] = float(intraday_mean[0])
self.intraday_percentage = list(np.divide(intraday_mean, intraday_mean.sum()) * self.nINTERVAL)
self.predp[0] = self.intraday_percentage[0] / self.nINTERVAL
self.VWAP_log[self.datetime_index[0]] = get_log(None, self.predv[0], self.predp[0])
# compute AR
arma = ARMA(self.trad_volume[-1]/self.intraday_percentage, order = (1,0))
self.AR_pars = arma.fit().params.tolist()
def pred_V(self):
if self.CAtoday == 0:
self.features_to_train[10,0] = self.features_to_train[:,0].sum()
else:
self.features_to_train[10,0] = self.CAtoday
lm = Lasso(alpha = self.LASSO_LAMBDA)
lm.fit(self.features_to_train[0:-1,:],self.volume_to_train)
self.predV = lm.predict(self.features_to_train[-1].reshape(1,-1))[0]
if self.predV < 0:
self.predV = 1 # Tracey to notice
self.is_V_predicted = 1
print('finish: pred_V')
def push_tick(self, date_time, volume):
if date_time < self.T_START_TIME:
self.CAtoday += volume
elif date_time < self.T_END_TIME:
if not self.is_V_predicted:
self.pred_V()
iter = int((date_time - self.T_START_TIME) / self.INTERVAL)
# if iter >= int(self.nINTERVAL * 11 / 8):
# iter = int(self.nINTERVAL * 11 / 8) - 1
if iter > (self.nINTERVAL / 2):
iter -= int(self.nINTERVAL * 3 / 8)
self.today_vol[iter] += volume
self.iter = iter
if self.iter == self.last_update:
pass
elif self.iter - self.last_update == 1:
self.VWAP_log[self.datetime_index[self.last_update]] = get_log(self.today_vol[self.last_update], self.predv[self.last_update], self.predp[self.last_update])
self.predv[self.iter] = int ((self.AR_pars[1] * (self.today_vol[self.last_update] / self.intraday_percentage[self.last_update] - self.AR_pars[0] ) + self.AR_pars[0] ) * self.intraday_percentage[self.iter])
if self.iter < (self.nINTERVAL - 1):
self.predp[self.iter] = self.predv[self.iter] * (1 - sum(self.predp[0:self.iter])) / (self.predV * (1 - sum(self.intraday_percentage[0:self.iter])/ self.nINTERVAL ))
else:
self.predp[self.nINTERVAL - 1] = 1 - sum(self.predp[0:(self.nINTERVAL - 1)])
self.VWAP_log[self.datetime_index[self.iter]] = get_log(None, self.predv[self.iter], self.predp[self.iter])
self.last_update = self.iter
elif self.iter - self.last_update > 1:
warnings.warn('Over %d secs without receiving data' % self.interval)
self.today_vol[iter] =+ volume
self.today_vol[self.last_update:self.iter] = [a + b for a, b in zip(self.today_vol[self.last_update:self.iter], [volume * s / sum(self.intraday_percentage[self.last_update:self.iter]) for s in self.intraday_percentage[self.last_update:self.iter]])]
for i in range(self.last_update, self.iter):
self.VWAP_log[self.datetime_index[i]] = get_log(self.today_vol[i], self.predv[i], self.predp[i])
self.predv[i + 1] = int ((self.AR_pars[1] * (self.today_vol[i] / self.intraday_percentage[i] - self.AR_pars[0] ) + self.AR_pars[0] ) * self.intraday_percentage[i + 1])
if i + 1 < (self.nINTERVAL - 1):
self.predp[i + 1] = self.predv[i + 1] * (1 - sum(self.predp[0:(i + 1)])) / (self.predV * (1 - sum(self.intraday_percentage[0:(i + 1)])/ self.nINTERVAL ))
else:
self.predp[self.nINTERVAL - 1] = 1 - sum(self.predp[0:(self.nINTERVAL - 1)])
self.VWAP_log[self.datetime_index[i + 1]] = get_log(None, self.predv[i + 1], self.predp[i + 1])
self.last_update = self.iter
else: # when self.iter < self.last_update, we only update real volume
pass
else:
self.today_vol[self.nINTERVAL - 1] += volume
self.VWAP_log[self.datetime_index[self.nINTERVAL - 1]] = get_log(self.today_vol[self.nINTERVAL - 1], self.predv[self.nINTERVAL - 1], self.predp[self.nINTERVAL - 1])
def get_predict(self):
return(self.VWAP_log)
lasso_lambda = 812314
n_tick_threshold = 1000
data_path = './VWAP_data_path/'
params = {
'TODAY': datetime.today(),
'T_START_TIME': datetime.today().replace(hour = 9, minute = 30, second = 0, microsecond = 0),
'T_END_TIME': datetime.today().replace(hour = 15, minute = 0, second = 0, microsecond = 0),
'LASSO_LAMBDA': lasso_lambda,
'N_TICK_THRESHOLD': n_tick_threshold,
'DATA_PATH': data_path
}
print(len([300,'SH000019','2017-02-20', params]))
a = VWAP(300,'SH000019','2017-02-20', params)
print('DoneVWAP')
df = pd.read_csv(a.DATA_PATH + "SH0000192017-02-20.csv")
df.columns = ['DateTime','Volume']
def toInput(t):
x = t[0]
y = t[1]
x = "2017-02-20 " + x
x = datetime.strptime(x, "%Y-%m-%d %H:%M:%S")
return x,y
for row in df.values.tolist():
a.push_tick(*toInput(row))
print(a.iter)
print(a.get_predict())