forked from theAIGuysCode/yolov4-deepsort
-
Notifications
You must be signed in to change notification settings - Fork 64
/
clip_object_tracker.py
370 lines (308 loc) · 15.5 KB
/
clip_object_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
import time
from pathlib import Path
import clip
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import xyxy2xywh, xywh2xyxy, \
strip_optimizer, set_logging, increment_path, scale_coords
from utils.plots import plot_one_box
from utils.torch_utils import select_device, time_synchronized
from utils.roboflow import predict_image
# deep sort imports
from deep_sort import preprocessing, nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_clip_detections as gdet
from utils.yolov5 import Yolov5Engine
from utils.yolov4 import Yolov4Engine
from utils.yolov7 import Yolov7Engine
classes = []
names = []
def update_tracks(tracker, frame_count, save_txt, txt_path, save_img, view_img, im0, gn):
if len(tracker.tracks):
print("[Tracks]", len(tracker.tracks))
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
xyxy = track.to_tlbr()
class_num = track.class_num
bbox = xyxy
class_name = names[int(class_num)] if opt.detection_engine == "yolov5" or "yolov7" else class_num
if opt.info:
print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax): {}".format(
str(track.track_id), class_name, (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))))
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write('frame: {}; track: {}; class: {}; bbox: {};\n'.format(frame_count, track.track_id, class_num,
*xywh))
if save_img or view_img: # Add bbox to image
label = f'{class_name} #{track.track_id}'
plot_one_box(xyxy, im0, label=label,
color=get_color_for(label), line_thickness=opt.thickness)
def get_color_for(class_num):
colors = [
"#4892EA",
"#00EEC3",
"#FE4EF0",
"#F4004E",
"#FA7200",
"#EEEE17",
"#90FF00",
"#78C1D2",
"#8C29FF"
]
num = hash(class_num) # may actually be a number or a string
hex = colors[num%len(colors)]
# adapted from https://stackoverflow.com/questions/29643352/converting-hex-to-rgb-value-in-python
rgb = tuple(int(hex.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
return rgb
def detect(save_img=False):
t0 = time_synchronized()
nms_max_overlap = opt.nms_max_overlap
max_cosine_distance = opt.max_cosine_distance
nn_budget = opt.nn_budget
# initialize deep sort
model_filename = "ViT-B/16"
device = "cuda" if torch.cuda.is_available() else "cpu"
half = device != "cpu"
model, transform = clip.load(model_filename, device=device, jit=False)
model.eval()
encoder = gdet.create_box_encoder(model, transform, batch_size=1, device=device)
# calculate cosine distance metric
metric = nn_matching.NearestNeighborDistanceMetric(
"cosine", max_cosine_distance, nn_budget)
# load yolov5 model here
if opt.detection_engine == "yolov5":
yolov5_engine = Yolov5Engine(opt.weights, device, opt.classes, opt.confidence, opt.overlap, opt.agnostic_nms, opt.augment, half)
global names
names = yolov5_engine.get_names()
# load yolov7 model here
elif opt.detection_engine == "yolov7":
yolov7_engine = Yolov7Engine(opt.weights, device, opt.classes, opt.confidence, opt.overlap, opt.agnostic_nms, opt.augment, half)
names = yolov7_engine.get_names()
elif opt.detection_engine == "yolov4":
yolov4_engine = Yolov4Engine(opt.weights, opt.cfg, device, opt.names, opt.classes, opt.confidence, opt.overlap, opt.agnostic_nms, opt.augment, half)
# initialize tracker
tracker = Tracker(metric)
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name,
exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True,
exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
frame_count = 0
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
if opt.detection_engine == "yolov5":
_ = yolov5_engine.infer(img.half() if half else img) if device.type != 'cpu' else None # run once
elif opt.detection_engine == "yolov7":
_ = yolov7_engine.infer(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Roboflow Inference
t1 = time_synchronized()
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
# choose between prediction engines (roboflow, yolov5, and yolov7)
if opt.detection_engine == "roboflow":
pred, classes = predict_image(im0, opt.api_key, opt.url, opt.confidence, opt.overlap, frame_count)
pred = [torch.tensor(pred)]
elif opt.detection_engine == "yolov5":
print("yolov5 inference")
pred = yolov5_engine.infer(img)
elif opt.detection_engine == "yolov7":
print("yolov7 inference")
pred = yolov7_engine.infer(img)
else:
print("yolov4 inference {}".format(im0.shape))
pred = yolov4_engine.infer(im0)
pred, classes = yolov4_engine.postprocess(pred, im0.shape)
pred = [torch.tensor(pred)]
t2 = time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
#moved up to roboflow inference
"""if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)"""
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + \
('' if dataset.mode == 'image' else f'_{frame}') # img.txt
# normalization gain whwh
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
if len(det):
print("\n[Detections]")
if opt.detection_engine == "roboflow":
# Print results
clss = np.array(classes)
for c in np.unique(clss):
n = (clss == c).sum() # detections per class
s += f'{n} {c}, ' # add to string
trans_bboxes = det[:, :4].clone()
bboxes = trans_bboxes[:, :4].cpu()
confs = det[:, 4]
elif opt.detection_engine == "yolov4":
# Print results
# Rescale boxes from img_size to im0 size
#det[:, :4] = scale_coords([1,1], det[:, :4], im0.shape).round()
clss = np.array(classes)
for c in np.unique(clss):
n = (clss == c).sum() # detections per class
s += f'{n} {c}, ' # add to string
# Transform bboxes from tlbr to tlwh
trans_bboxes = det[:, :4].clone()
bboxes = trans_bboxes[:, :4].cpu()
confs = det[:, 4]
"""for idx, box in enumerate(bboxes):
plot_one_box(xywh2xyxy(torch.tensor(box).view(1, 4))[0], im0, label=classes[idx],
color=get_color_for(classes[idx]), line_thickness=opt.thickness)"""
print(s)
else:
# Print results
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f'{n} {names[int(c)]}s, ' # add to string
# Transform bboxes from tlbr to tlwh
trans_bboxes = det[:, :4].clone()
trans_bboxes[:, 2:] -= trans_bboxes[:, :2]
bboxes = trans_bboxes[:, :4].cpu()
confs = det[:, 4]
class_nums = det[:, -1].cpu()
classes = class_nums
print(s)
# encode yolo detections and feed to tracker
features = encoder(im0, bboxes)
detections = [Detection(bbox, conf, class_num, feature) for bbox, conf, class_num, feature in zip(
bboxes, confs, classes, features)]
# run non-maxima supression
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
class_nums = np.array([d.class_num for d in detections])
indices = preprocessing.non_max_suppression(
boxs, class_nums, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
# update tracks
update_tracks(tracker, frame_count, save_txt, txt_path, save_img, view_img, im0, gn)
# Print time (inference + NMS)
print(f'Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
frame_count = frame_count+1
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str,
default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--cfg', type=str,
default='yolov4.cfg', help='yolov4 model cfg file path')
parser.add_argument('--names', type=str,
default='coco.names', help='yolov4 names file, file path')
# file/folder, 0 for webcam
parser.add_argument('--source', type=str,
default='data/images', help='source')
parser.add_argument('--img-size', type=int, default=640,
help='inference size (pixels)')
parser.add_argument('--confidence', type=float,
default=0.40, help='object confidence threshold')
parser.add_argument('--overlap', type=float,
default=0.30, help='IOU threshold for NMS')
parser.add_argument('--thickness', type=int,
default=3, help='Thickness of the bounding box strokes')
parser.add_argument('--device', default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true',
help='display results')
parser.add_argument('--save-txt', action='store_true',
help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true',
help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int,
help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true',
help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true',
help='augmented inference')
parser.add_argument('--update', action='store_true',
help='update all models')
parser.add_argument('--project', default='runs/detect',
help='save results to project/name')
parser.add_argument('--name', default='exp',
help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true',
help='existing project/name ok, do not increment')
parser.add_argument('--nms_max_overlap', type=float, default=1.0,
help='Non-maxima suppression threshold: Maximum detection overlap.')
parser.add_argument('--max_cosine_distance', type=float, default=0.4,
help='Gating threshold for cosine distance metric (object appearance).')
parser.add_argument('--nn_budget', type=int, default=None,
help='Maximum size of the appearance descriptors allery. If None, no budget is enforced.')
parser.add_argument('--api_key', default=None,
help='Roboflow API Key.')
parser.add_argument('--url', default=None,
help='Roboflow Model URL.')
parser.add_argument('--info', action='store_true',
help='Print debugging info.')
parser.add_argument("--detection-engine", default="roboflow", help="Which engine you want to use for object detection (yolov7, yolov5, yolov4, roboflow).")
opt = parser.parse_args()
print(opt)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()