-
Notifications
You must be signed in to change notification settings - Fork 15
/
augment_index_builder.py
476 lines (438 loc) · 20.7 KB
/
augment_index_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import os
import json
import random
import math
import numpy as np
import argparse
import torch
from augment_utils import *
from transformers import BertModel
from nltk.corpus import wordnet
from nltk.corpus.reader.sentiwordnet import SentiWordNetCorpusReader
from gensim.models import Word2Vec
from snippext.dataset import get_tokenizer
class IndexBuilder(object):
"""Index builder for span-level and token-level data augmentation
Support both token and span level augmentation operators.
Attributes:
tokens (list of lists): tokens of training data
labels (list of lists): labels of each token of training data (for AOE task)
sents (list of dicts): training examples for ASC task
w2v: Word2Vec model for similar word replacement
index (dict): a dictionary containing both the token and span level index
all_spans (list of str): a list of all the spans in the index
span_freqs (list of int): the document frequency of each span in all_spans
lm (string): the language model; 'bert' by default
"""
def __init__(self, train_fn, idf_fn, w2v, task, bert_path, lm='bert'):
if 'tagging' in task or 'qa' in task:
self.tokens, self.labels = read_tagging_file(train_fn)
else:
self.sents = read_asc_file(train_fn)
self.tokens = list(map(lambda x: x['token'], self.sents))
idf_dict = json.load(open(idf_fn))
self.w2v = w2v
self.task = task
self.index = {'token': dict(), 'span': dict()}
self.all_spans = list()
self.span_freqs = list()
self.avg_senti = dict()
if self.task == 'classification':
# sentiment sensitive
self.calc_senti_score()
self.tokenizer = get_tokenizer(lm=lm)
self.init_token_index(idf_dict)
self.init_span_index(bert_path=bert_path)
self.index_token_replacement()
def init_token_index(self, idf_dict):
oov_th = math.log(1e8)
for token in self.tokens:
for w in token:
if w not in self.index['token']:
self.index['token'][w] = dict()
wl = w.lower()
if wl not in idf_dict:
self.index['token'][w]['idf'] = oov_th
else:
self.index['token'][w]['idf'] = idf_dict[wl]
tokenized_w = self.tokenizer.tokenize(w)
self.index['token'][w]['bert_token'] = tokenized_w
self.index['token'][w]['bert_length'] = len(tokenized_w)
self.index['token'][w]['similar_words'] = None
self.index['token'][w]['similar_words_bert'] = None
self.index['token'][w]['similar_words_length'] = None
def init_span_index(self, sim_token='cls', sim_topk=100, bert_path=None):
if bert_path is None:
bert_model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states=True)
else:
model_state_dict = torch.load(bert_path)
bert_model = BertModel.from_pretrained('bert-base-uncased',
state_dict=model_state_dict,
output_hidden_states=True)
bert_model.eval()
aspect_dict = dict()
opinion_dict = dict()
aspect_token_list = []
opinion_token_list = []
aspect_raw_token_list = []
opinion_raw_token_list = []
n = len(self.tokens)
max_len_as = 0
max_len_op = 0
for j in range(n):
if 'classification' in self.task:
# for ASC datasets, the aspect is given in the term field
as_term = self.sents[j]['term']
# as_labels
as_labels = []
tokenized_as = self.tokenizer.tokenize(as_term)
for idx_t, t in enumerate(tokenized_as):
if idx_t == 0:
as_labels.append(1 if idx_t == 0 else 2)
else:
as_labels.append(0)
len_as = len(tokenized_as)
max_len_as = max(len_as, max_len_as)
as_str = ' '.join(tokenized_as)
if as_term not in aspect_dict:
aspect_dict[as_term] = {
'document_freq': 1,
'bert_token': tokenized_as,
'bert_length': len_as,
'bert_label': as_labels,
'similar_spans': [],
'similar_spans_length': []
}
aspect_token_list.append(tokenized_as)
aspect_raw_token_list.append(as_term)
else:
aspect_dict[as_term]['document_freq'] += 1
else:
# for AOE datasets, we have to enumerate tokens to find all aspects and opinions
aspects = []
opinions = []
m = len(self.tokens[j])
k = 0
while k < m:
if 'B-AS' in self.labels[j][k]:
aspects.append([self.tokens[j][k]])
k += 1
elif 'I-AS' in self.labels[j][k]:
# ignore spans that are incorrectly labeled
if len(aspects) > 0:
aspects[-1].append(self.tokens[j][k])
k += 1
elif 'B-OP' in self.labels[j][k]:
opinions.append([self.tokens[j][k]])
k += 1
elif 'I-OP' in self.labels[j][k]:
# ignore spans that are incorrectly labeled
if len(opinions) > 0:
opinions[-1].append(self.tokens[j][k])
k += 1
else:
k += 1
for as_term in aspects:
tokenized_as = []
as_labels = []
for idx_as, w in enumerate(as_term):
tokenized_w = self.tokenizer.tokenize(w)
for idx_t, t in enumerate(tokenized_w):
if idx_t == 0:
as_labels.append(1 if idx_as == 0 else 2)
else:
as_labels.append(0)
tokenized_as += tokenized_w
len_as = len(tokenized_as)
max_len_as = max(len_as, max_len_as)
as_str = ' '.join(tokenized_as)
as_raw = ' '.join(as_term)
if as_raw not in aspect_dict:
aspect_dict[as_raw] = {
'document_freq': 1,
'bert_token': tokenized_as,
'bert_length': len_as,
'bert_label': as_labels,
'similar_spans': [],
'similar_spans_length': []
}
aspect_token_list.append(tokenized_as)
aspect_raw_token_list.append(as_raw)
else:
aspect_dict[as_raw]['document_freq'] += 1
for op_term in opinions:
tokenized_op = []
op_labels = []
for idx_op, w in enumerate(op_term):
tokenized_w = self.tokenizer.tokenize(w)
for idx_t, t in enumerate(tokenized_w):
if idx_t == 0:
op_labels.append(3 if idx_op == 0 else 4)
else:
op_labels.append(0)
tokenized_op += tokenized_w
len_op = len(tokenized_op)
max_len_op = max(len_op, max_len_op)
op_str = ' '.join(tokenized_op)
op_raw = ' '.join(op_term)
if op_raw not in opinion_dict:
opinion_dict[op_raw] = {
'document_freq': 1,
'bert_token': tokenized_op,
'bert_length': len_op,
'bert_label': op_labels,
'similar_spans': [],
'similar_spans_length': []
}
opinion_token_list.append(tokenized_op)
opinion_raw_token_list.append(op_raw)
else:
opinion_dict[op_raw]['document_freq'] += 1
as_ids = []
op_ids = []
# Pad to max length and convert to ids
for as_term in aspect_token_list:
tk_as = ['[CLS]'] + as_term + ['[SEP]'] + ['[PAD]' for k in range(max_len_as - len(as_term))]
as_ids.append(self.tokenizer.convert_tokens_to_ids(tk_as))
for op_term in opinion_token_list:
tk_op = ['[CLS]'] + op_term + ['[SEP]'] + ['[PAD]' for k in range(max_len_op - len(op_term))]
op_ids.append(self.tokenizer.convert_tokens_to_ids(tk_op))
# migrated to transformers
if len(aspect_token_list) > 0:
X_as = torch.LongTensor(as_ids)
as_encoded_layers = bert_model(X_as)[2]
X_as = as_encoded_layers[-2].detach()
if len(opinion_token_list) > 0:
X_op = torch.LongTensor(op_ids)
op_encoded_layers = bert_model(X_op)[2]
X_op = op_encoded_layers[-2].detach()
# Compute the dot-product between all pairs of spans
for i in range(len(aspect_token_list)):
if sim_token == 'all':
# using all tokens
q = X_as[i]
z = q * X_as
score = torch.sum(z, dim=(1,2)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_as, axis=(1,2)))
elif sim_token == 'cls':
# using the CLS token
q = X_as[i][0]
z = q * X_as[:, 0, :]
score = torch.sum(z, dim=(1)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_as[:, 0, :], axis=(1)))
elif sim_token == 'bas':
# using the first token of the span
q = X_as[i][1]
z = q * X_as[:, 1, :]
score = torch.sum(z, dim=(1)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_as[:, 1, :], axis=(1)))
topk_idx = torch.argsort(score, dim=0, descending=True)
for idx in topk_idx:
if idx == i:
continue
if len(aspect_dict[aspect_raw_token_list[i]]['similar_spans']) < sim_topk:
aspect_dict[aspect_raw_token_list[i]]['similar_spans'].append(
[aspect_raw_token_list[idx], score[idx].item()])
aspect_dict[aspect_raw_token_list[i]]['similar_spans_length'].append(
aspect_dict[aspect_raw_token_list[idx]]['bert_length'])
else:
break
for i in range(len(opinion_token_list)):
if sim_token == 'all':
# using all tokens
q = X_op[i]
z = q * X_op
score = torch.sum(z, dim=(1,2)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_op, axis=(1,2)))
elif sim_token == 'cls':
# using the CLS token
q = X_op[i][0]
z = q * X_op[:, 0, :]
score = torch.sum(z, dim=(1)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_op[:, 0, :], axis=(1)))
elif sim_token == 'bas':
# using the first token of the span
q = X_op[i][1]
z = q * X_op[:, 1, :]
score = torch.sum(z, dim=(1)) / torch.tensor(
np.linalg.norm(q) * np.linalg.norm(X_op[:, 1, :], axis=(1)))
topk_idx = torch.argsort(score, dim=0, descending=True)
for idx in topk_idx:
if idx == i:
continue
if len(opinion_dict[opinion_raw_token_list[i]]['similar_spans']) < sim_topk:
opinion_dict[opinion_raw_token_list[i]]['similar_spans'].append(
[opinion_raw_token_list[idx], score[idx].item()])
opinion_dict[opinion_raw_token_list[i]]['similar_spans_length'].append(
opinion_dict[opinion_raw_token_list[idx]]['bert_length'])
else:
break
self.index['span'] = {'aspect': aspect_dict, 'opinion': opinion_dict}
def index_token_replacement(self):
# pre-compute all token replacement candidates and store them in the index
for token in self.tokens:
for w in token:
if is_stopword(w) or self.index['token'][w]['similar_words'] is not None:
continue
self.index['token'][w]['similar_words'] = []
# self.index['token'][w]['similar_words_bert'] = []
self.index['token'][w]['similar_words_length'] = []
synonyms = self.find_word_replacement(word_str=w)
similar_words_dict = dict()
if len(synonyms) >= 1:
for s in list(synonyms):
s_arr = s[0].split('_')
if s_arr[0] not in similar_words_dict:
similar_words_dict[s_arr[0]] = True
else:
continue
tokenized_s = self.tokenizer.tokenize(s_arr[0])
l_s = len(tokenized_s)
self.index['token'][w]['similar_words'].append([s_arr[0], s[1]])
# self.index['token'][w]['similar_words_bert'].append(tokenized_s)
self.index['token'][w]['similar_words_length'].append(l_s)
def find_word_replacement(self, word_str, sim_topk=10, is_senti_sensitive=False):
# find sim_topk similar words to word_str
if is_senti_sensitive:
# if sentiment sensitive, compute the senti score of word_str
senti_score = 0
word_str = word_str.lower()
if word_str.lower() in self.avg_senti:
senti_score = self.avg_senti[word_str.lower()]['pos_score'] - avg_senti[word_str.lower()]['neg_score']
if self.w2v is None:
# if Word2Vec is not given, using wordnet
syns = wordnet.synsets(word_str)
syn_list = []
for syn in syns:
for lem in syn.lemmas():
if lem.name() != word_str:
if is_senti_sensitive:
lem_senti_score = 0
if lem_str in self.avg_senti:
lem_senti_score = self.avg_senti[lem_str]['pos_score'] - self.avg_senti[lem_str]['neg_score']
''' maybe we can use a different way to determine whether two words
are of the same sentiment '''
if sign(lem_senti_score) == sign(senti_score):
syn_list.append(lem_str)
else:
syn_list.append(lem.name())
if len(syn_list) == 0:
return []
return list(zip(syn_list, [1.0 for i in range(len(syn_list))]))
else:
if word_str in self.w2v.wv.vocab:
# if word_str appears in Word2Vec vocabulary
similar_list = self.w2v.wv.most_similar(positive=[word_str], topn=sim_topk)
if is_senti_sensitive:
arr = []
for ws in similar_list:
w_senti_score = 0
w = ws[0]
if w in self.avg_senti:
w_senti_score = self.avg_senti[w]['pos_score'] - self.avg_senti[w]['neg_score']
if sign(w_senti_score) == sign(senti_score):
arr.append(ws)
return arr
else:
return similar_list
else:
# if word_str does not appear in Word2Vec vocabulary, find a synonym of it using WordNet
# if the synonym appears in Word2Vec vocabulary, use similar words of this synonym
syns = wordnet.synsets(word_str)
syns_dict = dict()
arr = []
for syn in syns:
flag = False
for lem in syn.lemmas():
if lem.name() != word_str:
syns_dict[lem.name()] = True
if lem.name() in self.w2v.wv.vocab:
similar_list = self.w2v.wv.most_similar(positive=[lem.name()], topn=sim_topk)
if is_senti_sensitive:
for ws in similar_list:
w_senti_score = 0
w = ws[0]
if w in self.avg_senti:
w_senti_score = self.avg_senti[w]['pos_score'] - self.avg_senti[w]['neg_score']
if sign(w_senti_score) == sign(senti_score):
arr.append(ws)
else:
arr = similar_list
flag = True
break
if flag:
break
if len(arr) == 0:
res = list(syns_dict.keys())
return list(zip(res, [1.0 for i in range(len(res))]))
else:
return arr
def calc_senti_score(self, swn_filename='combined_data/SentiWordNet_3.0.0_20100705.txt'):
# aggregate sentiment score of tokens using SentiWordNet
swn = SentiWordNetCorpusReader('./', [swn_filename])
for senti_synset in swn.all_senti_synsets():
w = senti_synset.synset.name().split('.')[0]
if w not in self.avg_senti:
self.avg_senti[w] = {
'pos_score': 0,
'neg_score': 0,
'count': 0
}
self.avg_senti[w]['pos_score'] += senti_synset.pos_score()
self.avg_senti[w]['neg_score'] += senti_synset.neg_score()
self.avg_senti[w]['count'] += 1
for w in self.avg_senti:
self.avg_senti[w]['pos_score'] /= self.avg_senti[w]['count']
self.avg_senti[w]['neg_score'] /= self.avg_senti[w]['count']
def dump_index(self, index_filename='augment_index.json'):
outfile = open(index_filename, 'w')
json.dump(self.index, outfile)
outfile.close()
# def build_idf_dict(text_path):
# from gensim.utils import simple_preprocess
# from collections import Counter
#
# cnt = Counter()
# N = 0
# for line in open(text_path):
# tokens = simple_preprocess(line.lower())
# tokens = set(tokens)
# if len(tokens) > 0:
# N += 1
# for token in tokens:
# cnt[token] += 1
#
# idf_dict = {}
# for token in cnt:
# idf_dict[token] = math.log(N / cnt[token])
# return idf_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="hotel_tagging")
parser.add_argument("--train_path", type=str, default=None)
parser.add_argument("--w2v_path", type=str, default="../rest_w2v.model")
parser.add_argument("--bert_path", type=str, default=None)
parser.add_argument("--lm", type=str, default='bert')
parser.add_argument("--idf_path", type=str, default=None)
parser.add_argument("--index_output_path", type=str, default="augment_index.json")
hp = parser.parse_args()
configs = json.load(open('configs.json'))
configs = {conf['name'] : conf for conf in configs}
config = configs[hp.task]
if hp.train_path is None:
train_fn = config['trainset']
else:
train_fn = hp.train_path
w2v = Word2Vec.load(hp.w2v_path)
if hp.idf_path[-5:] != '.json':
idf_fn = hp.idf_path + '.json'
if not os.path.exists(idf_fn):
idf_dict = build_idf_dict(hp.idf_path)
json.dump(idf_dict, open(idf_fn, 'w'))
else:
idf_fn = hp.idf_path
ib = IndexBuilder(train_fn, idf_fn, w2v,
config['task_type'],
hp.bert_path,
lm=hp.lm)
ib.dump_index(hp.index_output_path)