Skip to content

Latest commit

 

History

History
11 lines (11 loc) · 3.53 KB

File metadata and controls

11 lines (11 loc) · 3.53 KB

Machine-Learning-Interview-Preparation

Prepare to Technical Skills Here are the essential skills that a Machine Learning Engineer needs, as mentioned Read me files. Within each group are topics that you should be familiar with. Study Tip: Copy and paste this list into a document and save to your computer for easy referral. Computer Science Fundamentals and Programming Topics Data structures: Lists, stacks, queues, strings, hash maps, vectors, matrices, classes & objects, trees, graphs, etc. Algorithms: Recursion, searching, sorting, optimization, dynamic programming, etc. Computability and complexity: P vs. NP, NP-complete problems, big-O notation, approximate algorithms, etc. Computer architecture: Memory, cache, bandwidth, threads & processes, deadlocks, etc. Probability and Statistics Topics Basic probability: Conditional probability, Bayes rule, likelihood, independence, etc. Probabilistic models: Bayes Nets, Markov Decision Processes, Hidden Markov Models, etc. Statistical measures: Mean, median, mode, variance, population parameters vs. sample statistics etc. Proximity and error metrics: Cosine similarity, mean-squared error, Manhattan and Euclidean distance, log-loss, etc. Distributions and random sampling: Uniform, normal, binomial, Poisson, etc. Analysis methods: ANOVA, hypothesis testing, factor analysis, etc. Data Modeling and Evaluation Topics Data preprocessing: Munging/wrangling, transforming, aggregating, etc. Pattern recognition: Correlations, clusters, trends, outliers & anomalies, etc. Dimensionality reduction: Eigenvectors, Principal Component Analysis, etc. Prediction: Classification, regression, sequence prediction, etc.; suitable error/accuracy metrics. Evaluation: Training-testing split, sequential vs. randomized cross-validation, etc. Applying Machine Learning Algorithms and Libraries Topics Models: Parametric vs. nonparametric, decision tree, nearest neighbor, neural net, support vector machine, ensemble of multiple models, etc. Learning procedure: Linear regression, gradient descent, genetic algorithms, bagging, boosting, and other model-specific methods; regularization, hyperparameter tuning, etc. Tradeoffs and gotchas: Relative advantages and disadvantages, bias and variance, overfitting and underfitting, vanishing/exploding gradients, missing data, data leakage, etc. Software Engineering and System Design Topics Software interface: Library calls, REST APIs, data collection endpoints, database queries, etc. User interface: Capturing user inputs & application events, displaying results & visualization, etc. Scalability: Map-reduce, distributed processing, etc. Deployment: Cloud hosting, containers & instances, microservices, etc. Move on to the final lesson of this course to find lots of sample practice questions for each topic!

References To Learn and Develop your Self: