Skip to content

Latest commit

 

History

History
183 lines (157 loc) · 8.7 KB

README.md

File metadata and controls

183 lines (157 loc) · 8.7 KB

SSCNav: Confidence-Aware Semantic Scene Completion for Visual Semantic Navigation

Yiqing Liang1, Boyuan Chen1, Shuran Song1
1Columbia University
ICRA 2021

Overview

PyTorch implementation for paper "SSCNav: Confidence-Aware Semantic Scene Completion for Visual Semantic Navigation".

teaser

Content

Installation

Recommend working on conda environment, Python 3.7+

  1. Download Matterport3d dataset following instruction here.
  2. conda create -p /path/to/your/env python=3.7
  3. Install PyTorch.
  4. Install Habitat environment following instruction here.
  5. Clone and navigate to this repository.
  6. conda install --yes --file requirements.txt --channel default --channel menpo --channel conda-forge

Data Preparation

For training and testing Semantic Scene Completion Model and Confidence Model, download data (634M):

SceneCompletionData.zip
    |-- data_gen_1 \
    |-- data_gen_2 - training data for groundtruth semantic segmentation
    |-- data_gen_3 /
    |-- test_data_gen_1 \
    |-- test_data_gen_2 - testing data for groundtruth semantic segmentation
    |-- test_data_gen_3 /
    |-- train - training data for ACNet semantic segmentation output
    |-- test - testing data for ACNet semantic segmentation output

Pretrained Models

Download our pretrained models here (1.2G).

Model Description
cmplt.pth semantic scene completion model weight for groundtruth semantic segmentation
conf.pth confidence model weight for groundtruth semantic segmentation
cmplt_seg.pth semantic scene completion model weight for ACNet semantic segmentation output
conf_seg.pth confidence model weight for ACNet semantic segmentation output
final_seg.pth ACNet semantic segmentation model weight
final_Q.pth SSCNav navigation model weight

Usage

Semantic Scene Completion

The experiment settings are controlled by file configs/config.json. Each experiment is assigned a unique key in the file. Check the JSON file for details.

Most Important JSON keys:

  • root_dirs: determine which training dataset to use.
  • test_dirs: determine which dataset is used for evaluation.
  • layer_infos: configuration of model structure.
  • cd_path: pretrained weight for semantic scene completion model.

Note: data are provided in the form of list. For example:

"root_dirs": ["../resized_buffer/data_gen_1", "../resized_buffer/data_gen_2", "../resized_buffer/data_gen_3"]    
"test_dirs": ["../resized_buffer/test_data_gen_1", "../resized_buffer/test_data_gen_2", "../resized_buffer/test_data_gen_3"]

Training & Evaluating a Semantic Scene Completion Model

The command to train the provided model for groundtruth semantic segmentation:

python train_cmplt.py train_cmplt_resized

The command to train the provided model for ACNet semantic segmentation output:

python train_cmplt.py train_cmplt_resized_seg

Training & Evaluating a Confidence Model

The command to train the provided model for groundtruth semantic segmentation:

python train_conf.py train_conf_4

The command to train the provided model for ACNet semantic segmentation output:

python train_conf.py train_conf_seg_6

Navigation

Navigation Experiments are controlled by argparse.

Here are some fields that matter most (feel free to check the rest in the code though!):

  • title: experiment title, determines where to save the model & visualization & log.
  • config_paths: configuration file for Habitat, ./configs/agent_train.yaml for training and ./configs/agent_test.yaml for testing.
  • user_semantics: True -> use ACNet segmentation, groundtruth otherwise.
  • cmplt & cmplt_pretrained: if semantic completion model is used, must set former to be True and optionally assign initial weight for the model.
  • conf & conf_pretrained: if confidence model is used, must set former to be True and optionally assign initial weight for the model.
  • save_dir: place to store model and visualization.
  • log_dir: place to store Tensorboard log.
  • load_json: dir to the JSON file which stores the evaluation episodes.
usage: train_agent.py [-h] --title TITLE [--seed SEED] [--device DEVICE]
                      [--config_paths CONFIG_PATHS] [--flip FLIP]
                      [--seg_threshold SEG_THRESHOLD] [--pano]
                      [--user_semantics] [--seg_pretrained SEG_PRETRAINED]
                      [--cmplt] [--cmplt_pretrained CMPLT_PRETRAINED] [--conf]
                      [--conf_pretrained CONF_PRETRAINED] [--targets TARGETS]
                      [--aggregate] [--memory_size MEMORY_SIZE]
                      [--num_channel NUM_CHANNEL]
                      [--success_threshold SUCCESS_THRESHOLD]
                      [--collision_threshold COLLISION_THRESHOLD]
                      [--ignore IGNORE] [--Q_pretrained Q_PRETRAINED]
                      [--offset OFFSET] [--floor_threshold FLOOR_THRESHOLD]
                      [--lr LR] [--momentum MOMENTUM]
                      [--weight_decay WEIGHT_DECAY] [--gamma GAMMA]
                      [--batch_size BATCH_SIZE] [--buffer_size BUFFER_SIZE]
                      [--height HEIGHT] [--area_x AREA_X] [--area_z AREA_Z]
                      [--h H] [--w W] [--h_new H_NEW] [--w_new W_NEW]
                      [--max_step MAX_STEP] [--navigable_base NAVIGABLE_BASE]
                      [--max_transition MAX_TRANSITION]
                      [--start_replay START_REPLAY]
                      [--update_target UPDATE_TARGET] [--start_eps START_EPS]
                      [--end_eps END_EPS] [--fix_transition FIX_TRANSITION]
                      [--success_reward SUCCESS_REWARD]
                      [--step_penalty STEP_PENALTY]
                      [--approach_reward APPROACH_REWARD]
                      [--collision_penalty COLLISION_PENALTY]
                      [--save_dir SAVE_DIR] [--save_interval SAVE_INTERVAL]
                      [--log_dir LOG_DIR] [--train_thin TRAIN_THIN]
                      [--loss_thin LOSS_THIN] [--train_vis TRAIN_VIS]
                      [--scene_types SCENE_TYPES] [--double_dqn] [--TAU TAU]
                      [--soft_update] [--count COUNT] [--preconf]
                      [--load_json LOAD_JSON] [--checkpoint CHECKPOINT]
                      [--shortest] [--tsplit TSPLIT] [--new_eval]
                      [--fake_conf] [--discrete] [--att] [--rc] [--unconf]
                      [--full_map]


Training a Navigation Model

The command to train the provided Q model:

python train_agent.py --cmplt 
    --cmplt_pretrained /local/crv/yiqing/result/train_cmplt_resized/17_cd.pth
    --conf --conf_pretrained /local/crv/yiqing/result/train_conf_4/14_fd.pth               

Evaluating a Navigation Model

The command to evaluate the provided Q model with groundtruth semantic segmentation:

python test_agent.py --Q_pretrained /local/crv/yiqing/result/s_cu_chal_4/60000.pth --cmplt --cmplt_pretrained /local/crv/yiqing/result/train_cmplt_resized/17_cd.pth --conf --conf_pretrained /local/crv/yiqing/result/train_conf_4/14_fd.pth               

The command to evaluate the provided Q model with ACNet semantic segmentation output:

python test_agent.py --user_semantics --seg_pretrained /local/crv/yiqing/result/train_seg/10.pth --Q_pretrained /local/crv/yiqing/result/s_cu_chal_4/60000.pth --cmplt --cmplt_pretrained /local/crv/yiqing/result/train_cmplt_resized_seg/16_cd.pth --conf --conf_pretrained /local/crv/yiqing/result/train_conf_seg_6/6_fd.pth               

BibTeX

@inproceedings{liang2021sscnav,
    title={SSCNav: Confidence-Aware Semantic Scene Completion for Visual Semantic Navigation},
    author={Liang, Yiqing and Chen, Boyuan and Song, Shuran},
    booktitle = {Proc. of The International Conference in Robotics and Automation (ICRA)},
    year={2021}
}

License

This repository is released under the MIT license. See LICENSE for additional details.

Acknowledgement

This work was supported in part by the Amazon Research Award and Columbia School of Engineering.