-
Notifications
You must be signed in to change notification settings - Fork 20
/
lanes.py
79 lines (69 loc) · 3.04 KB
/
lanes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import numpy as np
import matplotlib.pyplot as plt
def make_coordinates(image,line_parameters):
slope, intercept = line_parameters
y1 = image.shape[0] # Height
y2 = int(y1 * (3/5))
x1 = int((y1 - intercept)/slope)
x2 = int((y2 - intercept)/slope)
return np.array([x1,y1,x2,y2])
def average_slope_intercept(image,lines):
left_fit = []
right_fit = []
for line in lines:
x1,y1,x2,y2 = line.reshape(4)
parameters = np.polyfit((x1,x2),(y1,y2),1)
slope = parameters[0]
intercept = parameters[1]
if slope<0:
left_fit.append((slope,intercept))
else :
right_fit.append((slope,intercept))
left_fit_average = np.average(left_fit,axis=0)
right_fit_average = np.average(right_fit,axis=0)
left_line = make_coordinates(image,left_fit_average)
right_line = make_coordinates(image,right_fit_average)
return np.array([left_line,right_line])
def canny(image):
gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0) # Kernel size is 5x5
canny = cv2.Canny(blur,50,150)
return canny
def display_lines(image,lines):
line_image = np.zeros_like(image)
if lines is not None:
for line in lines:
x1,y1,x2,y2 = line.reshape(4) # Reshaping all the lines to a 1D array.
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10) # Draw a Blue Line(BGR in OpenCV)
return line_image
def region_of_interest(image):
height = image.shape[0]
polygons = np.array([
[(200,height),(1100,height),(550,250)]
]) # Triangle polygon because cv2.fillPoly expects an array of polygons.
mask = np.zeros_like(image) # Create a black mask to apply the above Triangle on.
cv2.fillPoly(mask,polygons,255) # A complete white triangle polygon on a black mask.
masked_image = cv2.bitwise_and(image,mask)
return masked_image
""" image = cv2.imread('./test_image.jpg')
lane_image = np.copy(image) # Always make a copy when working with arrays rather than directly assigning
canny_image = canny(lane_image)
cropped_image = region_of_interest(canny_image)
lines = cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),minLineLength=10,maxLineGap=5)
averaged_lines = average_slope_intercept(lane_image,lines)
line_image = display_lines(lane_image,averaged_lines)
combo_image = cv2.addWeighted(lane_image,0.8,line_image,1,1) # Imposing the line_image on the original image
cv2.imshow('Result',combo_image)
cv2.waitKey(0) """
cap = cv2.VideoCapture("test_video.mp4")
while(cap.isOpened()):
_, frame = cap.read()
canny_image = canny(frame)
cropped_image = region_of_interest(canny_image)
lines = cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),minLineLength=10,maxLineGap=5)
averaged_lines = average_slope_intercept(frame,lines)
line_image = display_lines(frame,averaged_lines)
combo_image = cv2.addWeighted(frame,0.8,line_image,1,1) # Imposing the line_image on the original image
cv2.imshow('Result',combo_image)
cv2.waitKey(1)