diff --git a/README.md b/README.md index 9ab125c..b9df1f9 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # limaair -This package downloads pollutant data from the [SENAMHI air quality network](https://www.senamhi.gob.pe/?p=calidad-del-aire) located in Lima, capital of Peru. +This package downloads pollutant data from the [SENAMHI air quality network](https://www.senamhi.gob.pe/?p=calidad-del-aire), meteorological data from [SENAMHI automatic weather staions](https://www.senamhi.gob.pe/servicios/?p=estaciones), and sounding data from [Jorge Chávez airport](https://en.wikipedia.org/wiki/Jorge_Ch%C3%A1vez_International_Airport) located in Lima, capital of Peru. The returned `data.frame` is a complete dataset. This means that missing data by missing hours is padded out by `NA`. @@ -19,22 +19,30 @@ devtools::install_github("quishqa/limaair") ``` ## How to use -`limaair` (until now) has one function: **`download_senamhi_pol()`**. +`limaair` has three functions: + - **`download_senamhi_pol()`**. + - **`download_senamhi_met()`**. + - **`donwload_airport_sounding()`** -To use it, you need the air quality station (AQS) code (`aqs_code`), +To use `download_senamhi_pol()`, you need the air quality station (AQS) code (`aqs_code`), the pollutant code (`pol_code`), and the start and end date of the download (`start_date` and `end_date`). +And, to use `download_senmahi_met()`, you need to know the automatic weather station (AWS) code +(`aws_code`) -`limaair` has two datasets to check `aqs_code` and `pol_code` values: +`limaair` has three datasets to check `aqs_code`, `pol_code`, and `aws_code` values: ```R library(limaair) -# To check SENAMHI AQS code, name, lat and lon +# To check SENAMHI AQS code, name, latitude and longitude senamhi_aqs # To check SENAMHI AQS pollutant code, name and units senamhi_params + +# To check SENAMHI AWS code, name latitude and longitude +senamhi_aws ``` ## Examples @@ -96,6 +104,31 @@ cm_pm25 <- download_senamhi_pol(aqs_codes = cm_sb_code, to_df = TRUE) # Look here! ``` +### Downloading meteorological data from automatic weather stations + +Following the same philosophy as `download_senamhi_pol` function, you can use `download_senamhi_met` +to download data for Temperature (°C), Precipitation (mm/hour), Relative Humidity (%), Wind speed (m/s) and direction (°). You only need to know the `aws_code`, which for some cases is the same as the `aqs_code` (**except for Campo de Marte**). In this example, We download meteorological data +for Campo de Marte AWS +```R +cm_code <- 112181 # senamhi_aws +start_date <- "01/01/2019" +end_date <- "28/02/2019" + +cm_met <- download_senamhi_met(112181, "01/01/2019", "28/02/2019") +``` +Like `download_senamhi_pol`, you can download data for multiple AWS. + +### Downloading sounding data from Jorge Chavez airport + +The `download_airport_sounding` function download sounding data from [Wyoming University sounding +repository](https://weather.uwyo.edu/upperair/sounding.html). Default values are set for [Jorge +Chavez International Airport](https://en.wikipedia.org/wiki/Jorge_Ch%C3%A1vez_International_Airport), so you can also use this function to download +sounding data for other airports ;) +```R +# Downloading sounding for 15/01/2019 at 12z +jc_sounding <- download_airport_sounding("15/01/2019") +``` + ### Exporting to csv If you prefer to process the data in another software, you can export the downloaded data to a csv.