Skip to content

Latest commit

 

History

History
59 lines (49 loc) · 1.98 KB

README.md

File metadata and controls

59 lines (49 loc) · 1.98 KB

PyPI version

TTA wrapper

Test time augmnentation wrapper for keras image segmentation and classification models.

Description

How it works?

Wrapper add augmentation layers to your Keras model like this:

          Input
            |           # input image; shape 1, H, W, C
       / / / \ \ \      # duplicate image for augmentation; shape N, H, W, C
      | | |   | | |     # apply augmentations (flips, rotation, shifts)
     your Keras model
      | | |   | | |     # reverse transformations
       \ \ \ / / /      # merge predictions (mean, max, gmean)
            |           # output mask; shape 1, H, W, C
          Output

Arguments

  • h_flip - bool, horizontal flip augmentation
  • v_flip - bool, vertical flip augmentation
  • rotataion - list, allowable angles - 90, 180, 270
  • h_shift - list of int, horizontal shift augmentation in pixels
  • v_shift - list of int, vertical shift augmentation in pixels
  • add - list of int/float, additive factor (aug_image = image + factor)
  • mul - list of int/float, additive factor (aug_image = image * factor)
  • contrast - list of int/float, contrast adjustment factor (aug_image = (image - mean) * factor + mean)
  • merge - one of 'mean', 'gmean' and 'max' - mode of merging augmented predictions together

Constraints

  1. model has to have 1 input and 1 output
  2. inference batch_size == 1
  3. image height == width if rotation augmentation is used

Installation

  1. PyPI package:
$ pip install tta-wrapper
  1. Latest version:
$ pip install git+https://github.com/qubvel/tta_wrapper/

Example

from keras.models import load_model
from tta_wrapper import tta_segmentation

model = load_model('path/to/model.h5')
tta_model = tta_segmentation(model, h_flip=True, rotation=(90, 270), 
                             h_shift=(-5, 5), merge='mean')
y = tta_model.predict(x)