-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
233 lines (195 loc) · 8.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import cv2
import argparse
import numpy as np
import tensorflow as tf
import yolo.config as cfg
from yolo.yolo_net import YOLONet
from utils.timer import Timer
class Detector(object):
def __init__(self, net, weight_file):
self.net = net
self.weights_file = weight_file
self.classes = cfg.CLASSES
self.num_class = len(self.classes)
self.image_size = cfg.IMAGE_SIZE
self.cell_size = cfg.CELL_SIZE
self.boxes_per_cell = cfg.BOXES_PER_CELL
self.threshold = cfg.THRESHOLD
self.iou_threshold = cfg.IOU_THRESHOLD
self.boundary1 = self.cell_size * self.cell_size * self.num_class
self.boundary2 = self.boundary1 +\
self.cell_size * self.cell_size * self.boxes_per_cell
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
print('Restoring weights from: ' + self.weights_file)
self.saver = tf.train.Saver()
self.saver.restore(self.sess, self.weights_file)
def draw_result(self, img, result):
for i in range(len(result)):
x = int(result[i][1])
y = int(result[i][2])
w = int(result[i][3] / 2)
h = int(result[i][4] / 2)
cv2.rectangle(img, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2)
cv2.rectangle(img, (x - w, y - h - 20),
(x + w, y - h), (125, 125, 125), -1)
lineType = cv2.LINE_AA if cv2.__version__ > '3' else cv2.CV_AA
cv2.putText(
img, result[i][0] + ' : %.2f' % result[i][5],
(x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 0, 0), 1, lineType)
def detect(self, img):
img_h, img_w, _ = img.shape
inputs = cv2.resize(img, (self.image_size, self.image_size))
inputs = cv2.cvtColor(inputs, cv2.COLOR_BGR2RGB).astype(np.float32)
inputs = (inputs / 255.0) * 2.0 - 1.0
inputs = np.reshape(inputs, (1, self.image_size, self.image_size, 3))
result = self.detect_from_cvmat(inputs)[0]
for i in range(len(result)):
result[i][1] *= (1.0 * img_w / self.image_size)
result[i][2] *= (1.0 * img_h / self.image_size)
result[i][3] *= (1.0 * img_w / self.image_size)
result[i][4] *= (1.0 * img_h / self.image_size)
return result
def detect_from_cvmat(self, inputs):
net_output = self.sess.run(self.net.logits,
feed_dict={self.net.images: inputs})
results = []
for i in range(net_output.shape[0]):
results.append(self.interpret_output(net_output[i]))
return results
def interpret_output(self, output):
probs = np.zeros((self.cell_size, self.cell_size,
self.boxes_per_cell, self.num_class))
class_probs = np.reshape(
output[0:self.boundary1],
(self.cell_size, self.cell_size, self.num_class))
scales = np.reshape(
output[self.boundary1:self.boundary2],
(self.cell_size, self.cell_size, self.boxes_per_cell))
boxes = np.reshape(
output[self.boundary2:],
(self.cell_size, self.cell_size, self.boxes_per_cell, 4))
offset = np.array(
[np.arange(self.cell_size)] * self.cell_size * self.boxes_per_cell)
offset = np.transpose(
np.reshape(
offset,
[self.boxes_per_cell, self.cell_size, self.cell_size]),
(1, 2, 0))
boxes[:, :, :, 0] += offset
boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2))
boxes[:, :, :, :2] = 1.0 * boxes[:, :, :, 0:2] / self.cell_size
boxes[:, :, :, 2:] = np.square(boxes[:, :, :, 2:])
boxes *= self.image_size
for i in range(self.boxes_per_cell):
for j in range(self.num_class):
probs[:, :, i, j] = np.multiply(
class_probs[:, :, j], scales[:, :, i])
filter_mat_probs = np.array(probs >= self.threshold, dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0],
filter_mat_boxes[1], filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(
filter_mat_probs, axis=3)[
filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0:
continue
for j in range(i + 1, len(boxes_filtered)):
if self.iou(boxes_filtered[i], boxes_filtered[j]) > self.iou_threshold:
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered > 0.0, dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
result.append(
[self.classes[classes_num_filtered[i]],
boxes_filtered[i][0],
boxes_filtered[i][1],
boxes_filtered[i][2],
boxes_filtered[i][3],
probs_filtered[i]])
return result
def iou(self, box1, box2):
tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - \
max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2])
lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - \
max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3])
inter = 0 if tb < 0 or lr < 0 else tb * lr
return inter / (box1[2] * box1[3] + box2[2] * box2[3] - inter)
def camera_detector(self, cap, wait=10):
detect_timer = Timer()
ret, frame = cap.read()
while ret:
#ret, frame = cap.read()
detect_timer.tic()
frame=cv2.resize(frame,(960,540))
result = self.detect(frame)
detect_timer.toc()
print('Average detecting time: {:.3f}s'.format(
detect_timer.average_time))
self.draw_result(frame, result)
cv2.imshow('Camera', frame)
key=cv2.waitKey(wait)
if key != -1:
break
ret, frame = cap.read()
def image_detector(self, imname, wait=0):
filenum=len(imname)
detect_timer = Timer()
#detect_timer.tic()
#for i in range(filenum):
#cv2.waitKey(wait)
detect_timer.tic()
image = cv2.imread(imname)
#cv2.imshow('Src',image)
result = self.detect(image)#检测部分
detect_timer.toc()
print('average detecting time: {:.3f}s'.format(detect_timer.average_time))
self.draw_result(image, result)
#dst=cv2.resize(image,(1280,720))
cv2.imshow('Image', image)
cv2.waitKey(wait)
#cv2.imwrite('save/'+str(i)+'.jpg',image)
#print('Total file number:%d'%filenum)
print('Total detecting time: {:.3f}s'.format(detect_timer.average_time))
print('Average detecting time: {:.3f}s'.format(detect_timer.total_time))
#cv2.waitKey(0)
def file_name(file_dir):
L=[]
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext(file)[1] == '.jpg':
L.append(os.path.join(root, file))
return L
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', default="yolo-450.ckpt", type=str)
parser.add_argument('--weight_dir', default='D:\\reference\\5-dataset\\pascal_voc\\output\\2019_08_28_15_19', type=str)
parser.add_argument('--data_dir', default="data", type=str)
parser.add_argument('--gpu', default='0', type=str)
#parser.add_argument('--cpu', default='0', type=str)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
yolo = YOLONet(False)
weight_file = os.path.join(args.data_dir, args.weight_dir, args.weights)
detector = Detector(yolo, weight_file)
#detect from camera
# cap = cv2.VideoCapture('E:/ship_test.MOV')
# detector.camera_detector(cap)
# detect from image file
imname ='data/dog.jpg'#file_name('test')#''test/00332.jpg'# file_name()#'test/00332.jpg'#'test/00332.jpg'
#print('Total file number:%d'%len(imname))
#myinput = input("Start:")
detector.image_detector(imname,wait=0)
if __name__ == '__main__':
main()