We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
import sys import numpy as np import pytest from qiboml.backends import PyTorchBackend from qibo import Circuit, gates from qibo.backends import construct_backend from qibo.quantum_info.metrics import infidelity def test_torch_gradients(): backend = PyTorchBackend() backend.np.manual_seed(42) nepochs = 400 optimizer = backend.np.optim.Adam target_state = backend.np.rand(4, dtype=backend.np.complex128) target_state = target_state / backend.np.norm(target_state) params = backend.np.rand(4, dtype=backend.np.float64, requires_grad=True) circuit = Circuit(2) circuit.add(gates.RX(0, params[0])) circuit.add(gates.RY(1, params[1])) circuit.add(gates.U2(1, params[2], params[3])) initial_params = params.clone() initial_loss = infidelity( target_state, backend.execute_circuit(circuit).state(), backend=backend ) optimizer = optimizer([params], lr=0.01) for _ in range(nepochs): optimizer.zero_grad() circuit.set_parameters(params) final_state = backend.execute_circuit(circuit).state() loss = infidelity(target_state, final_state, backend=backend) loss.backward() grad = params.grad.clone().norm() optimizer.step() assert initial_loss > loss assert initial_params[0] != params[0] assert grad.item() < 10e-3 @pytest.mark.skipif( sys.platform != "linux", reason="Tensorflow available only when testing on linux." ) def test_torch_tensorflow_gradients(): backend = PyTorchBackend() tf_backend = construct_backend(backend="qiboml", platform="tensorflow") target_state = backend.np.tensor([0.0, 1.0], dtype=backend.np.complex128) param = backend.np.tensor([0.1], dtype=backend.np.float64, requires_grad=True) circuit = Circuit(1) circuit.add(gates.RX(0, param[0])) optimizer = backend.np.optim.SGD optimizer = optimizer([param], lr=1) circuit.set_parameters(param) final_state = backend.execute_circuit(circuit).state() loss = infidelity(target_state, final_state, backend=backend) loss.backward() torch_param_grad = param.grad.clone().item() optimizer.step() torch_param = param.clone().item() target_state = tf_backend.tf.constant([0.0, 1.0], dtype=tf_backend.tf.complex128) param = tf_backend.tf.Variable([0.1], dtype=tf_backend.tf.float64) circuit = Circuit(1) circuit.add(gates.RX(0, param[0])) optimizer = tf_backend.tf.optimizers.SGD(learning_rate=1.0) with tf_backend.tf.GradientTape() as tape: circuit.set_parameters(param) final_state = tf_backend.execute_circuit(circuit).state() loss = infidelity(target_state, final_state, backend=tf_backend) grads = tape.gradient(loss, [param]) tf_param_grad = grads[0].numpy()[0] optimizer.apply_gradients(zip(grads, [param])) tf_param = param.numpy()[0] assert np.allclose(torch_param_grad, tf_param_grad, atol=1e-7, rtol=1e-7) assert np.allclose(torch_param, tf_param, atol=1e-7, rtol=1e-7)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The text was updated successfully, but these errors were encountered: