Skip to content

Latest commit

 

History

History
55 lines (37 loc) · 1.68 KB

README.md

File metadata and controls

55 lines (37 loc) · 1.68 KB

Open Source Love

🚘 The easiest implementation of fully convolutional networks

Results

Trials

Training Procedures

Performance

I train with two popular benchmark dataset: CamVid and Cityscapes

dataset n_class pixel accuracy
Cityscapes 20 96%
CamVid 32 93%

Training

Install packages

pip3 install -r requirements.txt

and download pytorch 0.2.0 from pytorch.org

and download CamVid dataset (recommended) or Cityscapes dataset

Run the code

  • default dataset is CamVid

create a directory named "CamVid", and put data into it, then run python codes:

python3 python/CamVid_utils.py 
python3 python/train.py CamVid
  • or train with CityScapes

create a directory named "CityScapes", and put data into it, then run python codes:

python3 python/CityScapes_utils.py 
python3 python/train.py CityScapes

Author

Po-Chih Huang / @pochih