-
Notifications
You must be signed in to change notification settings - Fork 0
/
zzz_references_html.html
647 lines (623 loc) · 60.1 KB
/
zzz_references_html.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>References — PISM, a Parallel Ice Sheet Model 2.1.1 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/alabaster.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="prev" title="Authorship" href="authorship.html" />
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="references">
<h1>References<a class="headerlink" href="#references" title="Permalink to this headline">¶</a></h1>
<p id="id1"><dl class="citation">
<dt class="label" id="id486"><span class="brackets">1</span></dt>
<dd><p>S. Balay and others. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.15, Argonne National Laboratory, 2021.</p>
</dd>
<dt class="label" id="id40"><span class="brackets">2</span></dt>
<dd><p>A. Aschwanden, G. Adalgeirsdóttir, and C. Khroulev. Hindcasting to measure ice sheet model sensitivity to initial states. <em>The Cryosphere</em>, 7:1083–1093, 2013. <a class="reference external" href="https://doi.org/10.5194/tc-7-1083-2013">doi:10.5194/tc-7-1083-2013</a>.</p>
</dd>
<dt class="label" id="id69"><span class="brackets">3</span></dt>
<dd><p>R. Bindschadler and twenty-seven others. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project). <em>J. Glaciol</em>, 59(214):195–224, 2013.</p>
</dd>
<dt class="label" id="id158"><span class="brackets">4</span></dt>
<dd><p>N. Golledge, A. Mackintosh, and 8 others. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. <em>Quaternary Science Reviews</em>, 46:30–45, 2012. <a class="reference external" href="https://doi.org/10.1016/j.quascirev.2012.05.004">doi:10.1016/j.quascirev.2012.05.004</a>.</p>
</dd>
<dt class="label" id="id160"><span class="brackets">5</span></dt>
<dd><p>N. Golledge and twelve others. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. <em>Quaternary Sci. Rev.</em>, 78(0):225–247, 2013. <a class="reference external" href="https://doi.org/10.1016/j.quascirev.2013.08.011">doi:10.1016/j.quascirev.2013.08.011</a>.</p>
</dd>
<dt class="label" id="id57"><span class="brackets">6</span></dt>
<dd><p>J.L. Bamber, R.L. Layberry, and S.P. Gogenini. A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. <em>J. Geophys. Res.</em>, 106 (D24):33,773–33,780, 2001.</p>
</dd>
<dt class="label" id="id129"><span class="brackets">7</span></dt>
<dd><p>J. Ettema, M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. <em>Geophys. Res. Let.</em>, 2009. <a class="reference external" href="https://doi.org/10.1029/2009GL038110">doi:10.1029/2009GL038110</a>.</p>
</dd>
<dt class="label" id="id234"><span class="brackets">8</span></dt>
<dd><p>S. J. Johnsen, D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. <em>Tellus</em>, 47B:624–629, 1995.</p>
</dd>
<dt class="label" id="id225"><span class="brackets">9</span></dt>
<dd><p>J. Imbrie and eight others. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta-O-18 record. In <em>Milankovitch and Climate: Understanding the Response to Astronomical Forcing</em>, pages 269–305. D. Reidel, 1984.</p>
</dd>
<dt class="label" id="id46"><span class="brackets">10</span></dt>
<dd><p>E. Bueler and J. Brown. Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. <em>J. Geophys. Res.</em>, 2009. F03008. <a class="reference external" href="https://doi.org/10.1029/2008JF001179">doi:10.1029/2008JF001179</a>.</p>
</dd>
<dt class="label" id="id117"><span class="brackets">11</span></dt>
<dd><p>P. Dickens and T. Morey. Increasing the scalability of PISM for high resolution ice sheet models. In <em>Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, May 2013, Boston</em>. 2013.</p>
</dd>
<dt class="label" id="id121"><span class="brackets">12</span></dt>
<dd><p>A. Payne and others. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. <em>J. Glaciol.</em>, 153:227–238, 2000.</p>
</dd>
<dt class="label" id="id242"><span class="brackets">13</span></dt>
<dd><p>I. Joughin, M. Fahnestock, D. MacAyeal, J. L. Bamber, and P. Gogineni. Observation and analysis of ice flow in the largest Greenland ice stream. <em>J. Geophys. Res.</em>, 106(D24):34021–34034, 2001.</p>
</dd>
<dt class="label" id="id294"><span class="brackets">14</span></dt>
<dd><p>D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. <em>J. Geophys. Res.</em>, 94(B4):4071–4087, 1989.</p>
</dd>
<dt class="label" id="id468"><span class="brackets">15</span></dt>
<dd><p>M. Weis, R. Greve, and K. Hutter. Theory of shallow ice shelves. <em>Continuum Mech. Thermodyn.</em>, 11(1):15–50, 1999.</p>
</dd>
<dt class="label" id="id45"><span class="brackets">16</span></dt>
<dd><p>E. Bueler, J. Brown, and C. Lingle. Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. <em>J. Glaciol.</em>, 53(182):499–516, 2007.</p>
</dd>
<dt class="label" id="id472"><span class="brackets">17</span></dt>
<dd><p>R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description. <em>The Cryosphere</em>, 5:715–726, 2011.</p>
</dd>
<dt class="label" id="id102"><span class="brackets">18</span></dt>
<dd><p>G. K. C. Clarke. Subglacial processes. <em>Annu. Rev. Earth Planet. Sci.</em>, 33:247–276, 2005. <a class="reference external" href="https://doi.org/10.1146/annurev.earth.33.092203.122621">doi:10.1146/annurev.earth.33.092203.122621</a>.</p>
</dd>
<dt class="label" id="id449"><span class="brackets">19</span></dt>
<dd><p>S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. <em>J. Geophys. Res.</em>, 105(B1):463–481, 2000. <a class="reference external" href="https://doi.org/10.1029/1999jb900329">doi:10.1029/1999jb900329</a>.</p>
</dd>
<dt class="label" id="id494"><span class="brackets">20</span></dt>
<dd><p>W. J. J. van Pelt and J. Oerlemans. Numerical simulations of cyclic behaviour in the parallel ice sheet model (pism). <em>Journal of Glaciology</em>, 58(208):347–360, 2012. <a class="reference external" href="https://doi.org/10.3189/2012JoG11J217">doi:10.3189/2012JoG11J217</a>.</p>
</dd>
<dt class="label" id="id414"><span class="brackets">21</span></dt>
<dd><p>C. Schoof. A variational approach to ice stream flow. <em>J. Fluid Mech.</em>, 556:227–251, 2006.</p>
</dd>
<dt class="label" id="id43"><span class="brackets">22</span></dt>
<dd><p>A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter. An enthalpy formulation for glaciers and ice sheets. <em>J. Glaciol.</em>, 58(209):441–457, 2012. <a class="reference external" href="https://doi.org/10.3189/2012JoG11J088">doi:10.3189/2012JoG11J088</a>.</p>
</dd>
<dt class="label" id="id237"><span class="brackets">23</span></dt>
<dd><p>I. Joughin. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. <em>Ann. Glaciol.</em>, 34:195–201, 2002.</p>
</dd>
<dt class="label" id="id370"><span class="brackets">24</span></dt>
<dd><p>S. Price, A. Payne, I. Howat, and B. Smith. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. <em>Proc. Nat. Acad. Sci.</em>, 108(22):8978–8983, 2011. <a class="reference external" href="https://doi.org/10.1073/pnas.1017313108">doi:10.1073/pnas.1017313108</a>.</p>
</dd>
<dt class="label" id="id264"><span class="brackets">25</span></dt>
<dd><p>E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). <em>J. Geophys. Res.</em>, 2012. <a class="reference external" href="https://doi.org/10.1029/2011JF002140">doi:10.1029/2011JF002140</a>.</p>
</dd>
<dt class="label" id="id496"><span class="brackets">26</span></dt>
<dd><p>W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine. An iterative inverse method to estimate basal topography and initialize ice flow models. <em>The Cryosphere</em>, 7(3):987–1006, 2013. <a class="reference external" href="https://doi.org/10.5194/tc-7-987-2013">doi:10.5194/tc-7-987-2013</a>.</p>
</dd>
<dt class="label" id="id182"><span class="brackets">27</span></dt>
<dd><p>M. Habermann, M. Truffer, and D. Maxwell. Changing basal conditions during the speed-up of Jakobshavn Isbrae, Greenland. <em>The Cryosphere</em>, 7(6):1679–1692, 2013. <a class="reference external" href="https://doi.org/10.5194/tc-7-1679-2013">doi:10.5194/tc-7-1679-2013</a>.</p>
</dd>
<dt class="label" id="id357"><span class="brackets">28</span></dt>
<dd><p>W. T. Pfeffer, J. T. Harper, and S. O'Neel. Kinematic constraints on glacier contributions to 21st-century sea-level rise. <em>Science</em>, 321:1340–1343, 2008.</p>
</dd>
<dt class="label" id="id55"><span class="brackets">29</span></dt>
<dd><p>R.C. Bales, J.R. McConnell, E. Mosley-Thompson, and G. Lamorey. Accumulation map for the Greenland Ice Sheet: 1971-1990. <em>Geophys. Res. Lett</em>, 28(15):2967–2970, 2001. <a class="reference external" href="https://doi.org/10.1029/2000GL012052">doi:10.1029/2000GL012052</a>.</p>
</dd>
<dt class="label" id="id204"><span class="brackets">30</span></dt>
<dd><p>R. Hock. Glacier melt: a review of processes and their modelling. <em>Prog. Phys. Geog.</em>, 29(3):362–391, 2005.</p>
</dd>
<dt class="label" id="id219"><span class="brackets">31</span></dt>
<dd><p>P. Huybrechts. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. <em>Quat. Sci. Rev.</em>, 21:203–231, 2002.</p>
</dd>
<dt class="label" id="id52"><span class="brackets">32</span></dt>
<dd><p>E. Bueler, C. S. Lingle, and J. A. Kallen-Brown. Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. <em>Ann. Glaciol.</em>, 46:97–105, 2007.</p>
</dd>
<dt class="label" id="id240"><span class="brackets">33</span></dt>
<dd><p>Ian Joughin, Sarah B. Das, Matt A. King, Ben E. Smith, Ian M. Howat, and Twila Moon. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. <em>Science</em>, 320(5877):781–783, 2008. URL: <a class="reference external" href="https://science.sciencemag.org/content/320/5877/781">https://science.sciencemag.org/content/320/5877/781</a>, <a class="reference external" href="https://doi.org/10.1126/science.1153288">doi:10.1126/science.1153288</a>.</p>
</dd>
<dt class="label" id="id110"><span class="brackets">34</span></dt>
<dd><p>K. M. Cuffey and W. S. B. Paterson. <em>The Physics of Glaciers</em>. Elsevier, 4th edition, 2010.</p>
</dd>
<dt class="label" id="id287"><span class="brackets">35</span></dt>
<dd><p>L. A. Lliboutry and P. Duval. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. <em>Annales Geophys.</em>, 3:207–224, 1985.</p>
</dd>
<dt class="label" id="id343"><span class="brackets">36</span></dt>
<dd><p>W. S. B. Paterson and W. F. Budd. Flow parameters for ice sheet modeling. <em>Cold Reg. Sci. Technol.</em>, 6(2):175–177, 1982.</p>
</dd>
<dt class="label" id="id49"><span class="brackets">37</span></dt>
<dd><p>Ed Bueler, Constantine Khroulev, Andy Aschwanden, Ian Joughin, and Ben E. Smith. Modeled and observed fast flow in the Greenland ice sheet. submitted, 2009.</p>
</dd>
<dt class="label" id="id141"><span class="brackets">38</span></dt>
<dd><p>A. C. Fowler. <em>Mathematical Models in the Applied Sciences</em>. Cambridge Univ. Press, 1997.</p>
</dd>
<dt class="label" id="id216"><span class="brackets">39</span></dt>
<dd><p>K. Hutter. <em>Theoretical Glaciology</em>. D. Reidel, 1983.</p>
</dd>
<dt class="label" id="id311"><span class="brackets">40</span></dt>
<dd><p>L. W. Morland. Unconfined ice-shelf flow. In C. J. van der Veen and J. Oerlemans, editors, <em>Dynamics of the West Antarctic ice sheet</em>, 99–116. Kluwer Academic Publishers, 1987.</p>
</dd>
<dt class="label" id="id70"><span class="brackets">41</span></dt>
<dd><p>H. Blatter. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. <em>J. Glaciol.</em>, 41(138):333–344, 1995.</p>
</dd>
<dt class="label" id="id344"><span class="brackets">42</span></dt>
<dd><p>Frank Pattyn. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. <em>J. Geophys. Res.</em>, 2003. <a class="reference external" href="https://doi.org/10.1029/2002JB002329">doi:10.1029/2002JB002329</a>.</p>
</dd>
<dt class="label" id="id342"><span class="brackets">43</span></dt>
<dd><p>W. S. B. Paterson. <em>The Physics of Glaciers</em>. Pergamon, 3rd edition, 1994.</p>
</dd>
<dt class="label" id="id165"><span class="brackets">44</span></dt>
<dd><p>R. Greve. A continuum–mechanical formulation for shallow polythermal ice sheets. <em>Phil. Trans. Royal Soc. London A</em>, 355:921–974, 1997.</p>
</dd>
<dt class="label" id="id222"><span class="brackets">45</span></dt>
<dd><p>P. Huybrechts and J. de Wolde. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. <em>J. Climate</em>, 12:2169–2188, 1999.</p>
</dd>
<dt class="label" id="id347"><span class="brackets">46</span></dt>
<dd><p>A. J. Payne and D. J. Baldwin. Analysis of ice–flow instabilities identified in the EISMINT intercomparison exercise. <em>Ann. Glaciol.</em>, 30:204–210, 2000.</p>
</dd>
<dt class="label" id="id142"><span class="brackets">47</span></dt>
<dd><p>Andrew C. Fowler. Modelling the flow of glaciers and ice sheets. In Brian Straughan and others, editors, <em>Continuum Mechanics and Applications in Geophysics and the Environment</em>, 201–221. Springer, 2001.</p>
</dd>
<dt class="label" id="id314"><span class="brackets">48</span></dt>
<dd><p>L. W. Morland and R. Zainuddin. Plane and radial ice-shelf flow with prescribed temperature profile. In C. J. van der Veen and J. Oerlemans, editors, <em>Dynamics of the West Antarctic ice sheet</em>, 117–140. Kluwer Academic Publishers, 1987.</p>
</dd>
<dt class="label" id="id444"><span class="brackets">49</span></dt>
<dd><p>M. Truffer and K. Echelmeyer. Of isbrae and ice streams. <em>Ann. Glaciol.</em>, 36(1):66–72, 2003.</p>
</dd>
<dt class="label" id="id58"><span class="brackets">50</span></dt>
<dd><p>J. L. Bamber, D. G. Vaughan, and I. Joughin. Widespread complex flow in the interior of the Antarctic ice sheet. <em>Science</em>, 287:1248–1250, 2000.</p>
</dd>
<dt class="label" id="id159"><span class="brackets">51</span></dt>
<dd><p>N. Golledge, C. Fogwill, A. Mackintosh, and K. Buckley. Dynamics of the Last Glacial Maximum Antarctic ice-sheet and its response to ocean forcing. <em>Proc. Nat. Acad. Sci.</em>, 109(40):16052–16056, 2012. <a class="reference external" href="https://doi.org/10.1073/pnas.1205385109">doi:10.1073/pnas.1205385109</a>.</p>
</dd>
<dt class="label" id="id304"><span class="brackets">52</span></dt>
<dd><p>M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. <em>The Cryosphere</em>, 5:727–740, 2011.</p>
</dd>
<dt class="label" id="id364"><span class="brackets">53</span></dt>
<dd><p>D. Pollard and R. M. DeConto. A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: Forced and unforced variations. In M. J. Hambrey and others, editors, <em>Glacial Sedimentary Processes and Products</em>. Blackwell Publishing Ltd., 2007.</p>
</dd>
<dt class="label" id="id410"><span class="brackets">54</span></dt>
<dd><p>C. Schoof and R. Hindmarsh. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. <em>Quart. J. Mech. Appl. Math.</em>, 63(1):73–114, 2010. <a class="reference external" href="https://doi.org/10.1093/qjmam/hbp025">doi:10.1093/qjmam/hbp025</a>.</p>
</dd>
<dt class="label" id="id170"><span class="brackets">55</span></dt>
<dd><p>R. Greve and H. Blatter. <em>Dynamics of Ice Sheets and Glaciers</em>. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, 2009.</p>
</dd>
<dt class="label" id="id84"><span class="brackets">56</span></dt>
<dd><p>Jed Brown, Barry Smith, and Aron Ahmadia. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. <em>SIAM J. Sci. Comp.</em>, 35(2):B359–B375, 2013.</p>
</dd>
<dt class="label" id="id248"><span class="brackets">57</span></dt>
<dd><p>I. Joughin, M. Fahnestock, S. Ekholm, and R. Kwok. Balance velocities of the Greenland ice sheet. <em>Geophysical Research Letters</em>, 24(23):3045–3048, 1997.</p>
</dd>
<dt class="label" id="id51"><span class="brackets">58</span></dt>
<dd><p>E. Bueler, C. S. Lingle, J. A. Kallen-Brown, D. N. Covey, and L. N. Bowman. Exact solutions and verification of numerical models for isothermal ice sheets. <em>J. Glaciol.</em>, 51(173):291–306, 2005. <a class="reference external" href="https://doi.org/10.3189/172756505781829449">doi:10.3189/172756505781829449</a>.</p>
</dd>
<dt class="label" id="id122"><span class="brackets">59</span></dt>
<dd><p>P. Huybrechts and others. The EISMINT benchmarks for testing ice-sheet models. <em>Ann. Glaciol.</em>, 23:1–12, 1996.</p>
</dd>
<dt class="label" id="id408"><span class="brackets">60</span></dt>
<dd><p>C. Schoof. Coulomb friction and other sliding laws in a higher order glacier flow model. <em>Math. Models Methods Appl. Sci. (M3AS)</em>, 20:157–189, 2010. <a class="reference external" href="https://doi.org/10.1142/S0218202510004180">doi:10.1142/S0218202510004180</a>.</p>
</dd>
<dt class="label" id="id484"><span class="brackets">61</span></dt>
<dd><p>G. Cogley and others. Glossary of Mass-Balance and Related Terms. IACS Working Group on Mass-balance Terminology and Methods, Draft 3, 10 July, 2009. URL: <a class="reference external" href="https://unesdoc.unesco.org/ark:/48223/pf0000192525_eng">https://unesdoc.unesco.org/ark:/48223/pf0000192525_eng</a>.</p>
</dd>
<dt class="label" id="id297"><span class="brackets">62</span></dt>
<dd><p>D. R. MacAyeal, V. Rommelaere, Ph. Huybrechts, C.L. Hulbe, J. Determann, and C. Ritz. An ice-shelf model test based on the Ross ice shelf. <em>Ann. Glaciol.</em>, 23:46–51, 1996.</p>
</dd>
<dt class="label" id="id388"><span class="brackets">63</span></dt>
<dd><p>Catherine Ritz, Vincent Rommelaere, and Christophe Dumas. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. <em>J. Geophys. Res.</em>, 106(D23):31943–31964, 2001.</p>
</dd>
<dt class="label" id="id299"><span class="brackets">64</span></dt>
<dd><p>M. W. Mahaffy. A three–dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. <em>J. Geophys. Res.</em>, 81(6):1059–1066, 1976.</p>
</dd>
<dt class="label" id="id399"><span class="brackets">65</span></dt>
<dd><p>F. Saito, A. Abe-Ouchi, and H. Blatter. An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. <em>Ann. Glaciol.</em>, 46:87–96, 2007.</p>
</dd>
<dt class="label" id="id416"><span class="brackets">66</span></dt>
<dd><p>C. Schoof. The effect of basal topography on ice sheet dynamics. <em>Continuum Mech. Thermodyn.</em>, 15:295–307, 2003. <a class="reference external" href="https://doi.org/10.1007/s00161-003-0119-3">doi:10.1007/s00161-003-0119-3</a>.</p>
</dd>
<dt class="label" id="id114"><span class="brackets">67</span></dt>
<dd><p>S. De La Chapelle, O. Castelnau, V. Lipenkov, and P. Duval. Dynamic recrystallization and texture development in ice as revealed by the study of deep cores in Antarctica and Greenland. <em>J. Geophys. Res.</em>, 103(B3):5091–5105, 1998.</p>
</dd>
<dt class="label" id="id285"><span class="brackets">68</span></dt>
<dd><p>V. Lipenkov, N. I. Barkov, P. Duval, and P. Pimienta. Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. <em>J. Glaciol.</em>, 35(1):392–398, 1989.</p>
</dd>
<dt class="label" id="id169"><span class="brackets">69</span></dt>
<dd><p>Ralf Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. <em>J. Climate</em>, 10(5):901–918, 1997.</p>
</dd>
<dt class="label" id="id156"><span class="brackets">70</span></dt>
<dd><p>D. L. Goldsby and D. L. Kohlstedt. Superplastic deformation of ice: experimental observations. <em>J. Geophys. Res.</em>, 106(M6):11017–11030, 2001.</p>
</dd>
<dt class="label" id="id440"><span class="brackets">71</span></dt>
<dd><p>Jonathan H. Tomkin. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. <em>Journal of Geophysical Research: Earth Surface</em>, 112(F2):, 2007. URL: <a class="reference external" href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JF000332">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JF000332</a>, <a class="reference external" href="https://doi.org/10.1029/2005JF000332">doi:10.1029/2005JF000332</a>.</p>
</dd>
<dt class="label" id="id20"><span class="brackets">72</span></dt>
<dd><p>R. Tuminaro, Mauro Perego, I. Tezaur, A. Salinger, and Stephen Price. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling. <em>SIAM Journal on Scientific Computing</em>, 38(5):C504–C532, 2016. <a class="reference external" href="https://doi.org/10.1137/15M1040839">doi:10.1137/15M1040839</a>.</p>
</dd>
<dt class="label" id="id21"><span class="brackets">73</span></dt>
<dd><p>William H. Lipscomb, Stephen F. Price, Matthew J. Hoffman, Gunter R. Leguy, Andrew R. Bennett, Sarah L. Bradley, Katherine J. Evans, Jeremy G. Fyke, Joseph H. Kennedy, Mauro Perego, and others. Description and evaluation of the Community Ice Sheet Model (CISM) v2.1. <em>Geoscientific Model Development</em>, 2019. <a class="reference external" href="https://doi.org/10.5194/gmd-12-387-2019">doi:10.5194/gmd-12-387-2019</a>.</p>
</dd>
<dt class="label" id="id317"><span class="brackets">74</span></dt>
<dd><p>K. W. Morton and D. F. Mayers. <em>Numerical Solutions of Partial Differential Equations: An Introduction</em>. Cambridge University Press, 2nd edition, 2005.</p>
</dd>
<dt class="label" id="id19"><span class="brackets">75</span></dt>
<dd><p>Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna. MPAS-Albany land ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids. <em>Geoscientific Model Development</em>, 2018. <a class="reference external" href="https://doi.org/10.5194/gmd-11-3747-2018">doi:10.5194/gmd-11-3747-2018</a>.</p>
</dd>
<dt class="label" id="id14"><span class="brackets">76</span></dt>
<dd><p>Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact newton method. <em>SIAM Journal on Scientific Computing</em>, 17(1):16–32, jan 1996. <a class="reference external" href="https://doi.org/10.1137/0917003">doi:10.1137/0917003</a>.</p>
</dd>
<dt class="label" id="id23"><span class="brackets">77</span></dt>
<dd><p>Irina K. Tezaur, Raymond S. Tuminaro, Mauro Perego, Andrew G. Salinger, and Stephen F. Price. On the scalability of the albany/FELIX first-order stokes approximation ice sheet solver for large-scale simulations of the Greenland and antarctic ice sheets. <em>Procedia Computer Science</em>, 51:2026–2035, 2015. <a class="reference external" href="https://doi.org/10.1016/j.procs.2015.05.467">doi:10.1016/j.procs.2015.05.467</a>.</p>
</dd>
<dt class="label" id="id44"><span class="brackets">78</span></dt>
<dd><p>E. Bueler and J. Brown. On exact solutions and numerics for cold, shallow, and thermocoupled ice sheets. preprint \texttt arXiv:physics/0610106, 2006.</p>
</dd>
<dt class="label" id="id209"><span class="brackets">79</span></dt>
<dd><p>R. Hooke. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. <em>Rev. Geophys. Space. Phys.</em>, 19(4):664–672, 1981.</p>
</dd>
<dt class="label" id="id41"><span class="brackets">80</span></dt>
<dd><p>A. Aschwanden and H. Blatter. Mathematical modeling and numerical simulation of polythermal glaciers. <em>J. Geophys. Res.</em>, 2009. F01027. <a class="reference external" href="https://doi.org/10.1029/2008JF001028">doi:10.1029/2008JF001028</a>.</p>
</dd>
<dt class="label" id="id4"><span class="brackets">81</span></dt>
<dd><p>Andreas Born. Tracer transport in an isochronal ice-sheet model. <em>Journal of Glaciology</em>, 63(237):22–38, oct 2016. <a class="reference external" href="https://doi.org/10.1017/jog.2016.111">doi:10.1017/jog.2016.111</a>.</p>
</dd>
<dt class="label" id="id5"><span class="brackets">82</span></dt>
<dd><p>A. Born and A. Robinson. Modeling the Greenland englacial stratigraphy. <em>The Cryosphere</em>, 15(9):4539–4556, 2021. <a class="reference external" href="https://doi.org/10.5194/tc-15-4539-2021">doi:10.5194/tc-15-4539-2021</a>.</p>
</dd>
<dt class="label" id="id6"><span class="brackets">83</span></dt>
<dd><p>Paul D. Bons, Daniela Jansen, Felicitas Mundel, Catherine C. Bauer, Tobias Binder, Olaf Eisen, Mark W. Jessell, Maria-Gema Llorens, Florian Steinbach, Daniel Steinhage, and Ilka Weikusat. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. <em>Nature Communications</em>, apr 2016. <a class="reference external" href="https://doi.org/10.1038/ncomms11427">doi:10.1038/ncomms11427</a>.</p>
</dd>
<dt class="label" id="id7"><span class="brackets">84</span></dt>
<dd><p>G. J.-M. C. Leysinger Vieli, C. Mart\'ın, R. C. A. Hindmarsh, and M. P. Lüthi. Basal freeze-on generates complex ice-sheet stratigraphy. <em>Nature Communications</em>, nov 2018. <a class="reference external" href="https://doi.org/10.1038/s41467-018-07083-3">doi:10.1038/s41467-018-07083-3</a>.</p>
</dd>
<dt class="label" id="id120"><span class="brackets">85</span></dt>
<dd><p>A. Payne. EISMINT: Ice sheet model intercomparison exercise phase two. Proposed simplified geometry experiments. 1997. URL: <a class="reference external" href="https://web.archive.org/web/20220119191557/http://homepages.vub.ac.be/~phuybrec/eismint/thermo-descr.pdf">https://web.archive.org/web/20220119191557/http://homepages.vub.ac.be/~phuybrec/eismint/thermo-descr.pdf</a>.</p>
</dd>
<dt class="label" id="id97"><span class="brackets">86</span></dt>
<dd><p>R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the ice sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). <em>J. Glaciol</em>, 56(197):371–383, 2010.</p>
</dd>
<dt class="label" id="id415"><span class="brackets">87</span></dt>
<dd><p>C. Schoof. Variational methods for glacier flow over plastic till. <em>J. Fluid Mech.</em>, 555:299–320, 2006.</p>
</dd>
<dt class="label" id="id477"><span class="brackets">88</span></dt>
<dd><p>Lucas K Zoet and Neal R Iverson. A slip law for glaciers on deformable beds. <em>Science</em>, 368(6486):76–78, 2020.</p>
</dd>
<dt class="label" id="id48"><span class="brackets">89</span></dt>
<dd><p>P Fretwell, Hamish D Pritchard, David G Vaughan, JL Bamber, NE Barrand, R Bell, C Bianchi, RG Bingham, DD Blankenship, G Casassa, and others. Bedmap2: improved ice bed, surface and thickness datasets for antarctica. <em>The Cryosphere</em>, 7:375–393, 2013.</p>
</dd>
<dt class="label" id="id34"><span class="brackets">90</span></dt>
<dd><p>Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing. <em>Cryosphere</em>, 14(2):599–632, 2020.</p>
</dd>
<dt class="label" id="id90"><span class="brackets">91</span></dt>
<dd><p>E. Bueler and W. van Pelt. Mass-conserving subglacial hydrology in the parallel ice sheet model version 0.6. <em>Geoscientific Model Development</em>, 8(6):1613–1635, 2015. <a class="reference external" href="https://doi.org/10.5194/gmd-8-1613-2015">doi:10.5194/gmd-8-1613-2015</a>.</p>
</dd>
<dt class="label" id="id366"><span class="brackets">92</span></dt>
<dd><p>D Pollard and RM DeConto. A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to antarctica. <em>The Cryosphere</em>, 6(5):953, 2012.</p>
</dd>
<dt class="label" id="id450"><span class="brackets">93</span></dt>
<dd><p>S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. <em>J. Geophys. Res.</em>, 105(B1):483–494, 2000.</p>
</dd>
<dt class="label" id="id427"><span class="brackets">94</span></dt>
<dd><p>M. Siegert, A. Le Brocq, and A. Payne. <em>Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications for sedimentary processes</em>, pages 3–10. Wiley-Blackwell, Malden, MA, USA, 2007.</p>
</dd>
<dt class="label" id="id417"><span class="brackets">95</span></dt>
<dd><p>C. Schoof, I. J. Hewitt, and M. A. Werder. Flotation and free surface flow in a model for subglacial drainage. Part I: Distributed drainage. <em>J. Fluid Mech.</em>, 702:126–156, 2012.</p>
</dd>
<dt class="label" id="id283"><span class="brackets">96</span></dt>
<dd><p>C. S. Lingle and J. A. Clark. A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. <em>J. Geophys. Res.</em>, 90(C1):1100–1114, 1985.</p>
</dd>
<dt class="label" id="id167"><span class="brackets">97</span></dt>
<dd><p>Ralf Greve. Glacial isostasy: Models for the response of the Earth to varying ice loads. In Brian Straughan and others, editors, <em>Continuum Mechanics and Applications in Geophysics and the Environment</em>, 307–325. Springer, 2001.</p>
</dd>
<dt class="label" id="id33"><span class="brackets">98</span></dt>
<dd><p>T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann. Parameterization for subgrid-scale motion of ice-shelf calving fronts. <em>The Cryosphere</em>, 5:35–44, 2011.</p>
</dd>
<dt class="label" id="id279"><span class="brackets">99</span></dt>
<dd><p>A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. <em>The Cryosphere</em>, 6:273–286, 2012. <a class="reference external" href="https://doi.org/10.5194/tc-6-273-2012">doi:10.5194/tc-6-273-2012</a>.</p>
</dd>
<dt class="label" id="id473"><span class="brackets">100</span></dt>
<dd><p>R. Winkelmann, A. Levermann, K. Frieler, and M.A. Martin. Increased future ice discharge from antarctica owing to higher snowfall. <em>Nature</em>, 492:239–242, 2012.</p>
</dd>
<dt class="label" id="id135"><span class="brackets">101</span></dt>
<dd><p>J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann. Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison. <em>J. Glaciol.</em>, 60(220):353–360, 2014. <a class="reference external" href="https://doi.org/10.3189/2014JoG13J093">doi:10.3189/2014JoG13J093</a>.</p>
</dd>
<dt class="label" id="id150"><span class="brackets">102</span></dt>
<dd><p>R. M. Gladstone, A. J. Payne, and S. L. Cornford. Parameterising the grounding line in flow-line ice sheet models. <em>The Cryosphere</em>, 4:605–619, 2010. <a class="reference external" href="https://doi.org/10.5194/tc-4-605-2010">doi:10.5194/tc-4-605-2010</a>.</p>
</dd>
<dt class="label" id="id315"><span class="brackets">103</span></dt>
<dd><p>M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S. Rebuffi. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. <em>Geophysical Research Letters</em>, pages n/a–n/a, 2016. URL: <a class="reference external" href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL067695">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL067695</a>, <a class="reference external" href="https://doi.org/10.1002/2016GL067695">doi:10.1002/2016GL067695</a>.</p>
</dd>
<dt class="label" id="id24"><span class="brackets">104</span></dt>
<dd><p>Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli. Calving relation for tidewater glaciers based on detailed stress field analysis. <em>The Cryosphere</em>, 12(2):721–739, feb 2018. <a class="reference external" href="https://doi.org/10.5194/tc-12-721-2018">doi:10.5194/tc-12-721-2018</a>.</p>
</dd>
<dt class="label" id="id37"><span class="brackets">105</span></dt>
<dd><p>J. M. Amundson, M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. <em>J. Geophys. Res.</em>, 2010. F01005. <a class="reference external" href="https://doi.org/10.1029/2009JF001405">doi:10.1029/2009JF001405</a>.</p>
</dd>
<dt class="label" id="id30"><span class="brackets">106</span></dt>
<dd><p>T. Albrecht and A. Levermann. Fracture field for large-scale ice dynamics. <em>J. Glaciol.</em>, 58(207):165–176, 2012. <a class="reference external" href="https://doi.org/10.3189/2012JoG11J191">doi:10.3189/2012JoG11J191</a>.</p>
</dd>
<dt class="label" id="id274"><span class="brackets">107</span></dt>
<dd><p>Jean Lemaitre. Phenomenological aspects of damage. In <em>A course on damage mechanics</em>, pages 1–37. Springer, 1996.</p>
</dd>
<dt class="label" id="id73"><span class="brackets">108</span></dt>
<dd><p>CP Borstad, E Rignot, J Mouginot, and MP Schodlok. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to larsen c ice shelf. <em>The Cryosphere</em>, 7(6):1931–1947, 2013.</p>
</dd>
<dt class="label" id="id32"><span class="brackets">109</span></dt>
<dd><p>T. Albrecht and A. Levermann. Fracture-induced softening for large-scale ice dynamics. <em>The Cryosphere</em>, 8(2):587–605, 2014. <a class="reference external" href="https://doi.org/10.5194/tc-8-587-2014">doi:10.5194/tc-8-587-2014</a>.</p>
</dd>
<dt class="label" id="id74"><span class="brackets">110</span></dt>
<dd><p>Chris Borstad, Ala Khazendar, Bernd Scheuchl, Mathieu Morlighem, Eric Larour, and Eric Rignot. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant larsen b ice shelf. <em>Geophysical Research Letters</em>, 43(5):2027–2035, 2016.</p>
</dd>
<dt class="label" id="id202"><span class="brackets">111</span></dt>
<dd><p>R. C. A. Hindmarsh and A. J. Payne. Time–step limits for stable solutions of the ice–sheet equation. <em>Ann. Glaciol.</em>, 23:74–85, 1996.</p>
</dd>
<dt class="label" id="id105"><span class="brackets">112</span></dt>
<dd><p>JG Cogley, R Hock, LA Rasmussen, AA Arendt, A Bauder, RJ Braithwaite, P Jansson, G Kaser, M Möller, L Nicholson, and others. Glossary of glacier mass balance and related terms. <em>IHP-VII technical documents in hydrology</em>, 86:965, 2011.</p>
</dd>
<dt class="label" id="id230"><span class="brackets">113</span></dt>
<dd><p>A. H. Jarosch, C. G. Schoof, and F. S. Anslow. Restoring mass conservation to shallow ice flow models over complex terrain. <em>The Cryosphere</em>, 7(1):229–240, 2013. <a class="reference external" href="https://doi.org/10.5194/tc-7-229-2013">doi:10.5194/tc-7-229-2013</a>.</p>
</dd>
<dt class="label" id="id8"><span class="brackets">114</span></dt>
<dd><p>Piotr K. Smolarkiewicz. Comment on "A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes". <em>Monthly Weather Review</em>, 117(11):2626 – 2632, 1989. URL: <a class="reference external" href="https://journals.ametsoc.org/view/journals/mwre/117/11/1520-0493_1989_117_2626_copdas_2_0_co_2.xml">https://journals.ametsoc.org/view/journals/mwre/117/11/1520-0493_1989_117_2626_copdas_2_0_co_2.xml</a>, <a class="reference external" href="https://doi.org/10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2">doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2</a>.</p>
</dd>
<dt class="label" id="id385"><span class="brackets">115</span></dt>
<dd><p>E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and B. de Fleurian. Modeling of ocean-induced ice melt rates of five west greenland glaciers over the past two decades. <em>Geophysical Research Letters</em>, 43(12):6374–6382, 2016. <a class="reference external" href="https://doi.org/10.1002/2016GL068784">doi:10.1002/2016GL068784</a>.</p>
</dd>
<dt class="label" id="id88"><span class="brackets">116</span></dt>
<dd><p>Ed Bueler. Lessons from the short history of ice sheet model intercomparison. <em>The Cryosphere Discussions</em>, 2:399–412, 2008. <a class="reference external" href="https://doi.org/10.5194/tcd-2-399-2008">doi:10.5194/tcd-2-399-2008</a>.</p>
</dd>
<dt class="label" id="id186"><span class="brackets">117</span></dt>
<dd><p>P. Halfar. On the dynamics of the ice sheets 2. <em>J. Geophys. Res.</em>, 88(C10):6043–6051, 1983.</p>
</dd>
<dt class="label" id="id197"><span class="brackets">118</span></dt>
<dd><p>R. C. A. Hindmarsh. Thermoviscous stability of ice-sheet flows. <em>J. Fluid Mech.</em>, 502:17–40, 2004.</p>
</dd>
<dt class="label" id="id199"><span class="brackets">119</span></dt>
<dd><p>R. C. A. Hindmarsh. Stress gradient damping of thermoviscous ice flow instabilities. <em>J. Geophys. Res.</em>, 2006. <a class="reference external" href="https://doi.org/10.1029/2005JB004019">doi:10.1029/2005JB004019</a>.</p>
</dd>
<dt class="label" id="id398"><span class="brackets">120</span></dt>
<dd><p>F. Saito, A. Abe-Ouchi, and H. Blatter. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. <em>J. Geophys. Res.</em>, 2006. <a class="reference external" href="https://doi.org/10.1029/2004JF000273">doi:10.1029/2004JF000273</a>.</p>
</dd>
<dt class="label" id="id348"><span class="brackets">121</span></dt>
<dd><p>A. J. Payne and P. W. Dongelmans. Self–organization in the thermomechanical flow of ice sheets. <em>J. Geophys. Res.</em>, 102(B6):12219–12233, 1997.</p>
</dd>
<dt class="label" id="id224"><span class="brackets">122</span></dt>
<dd><p>F. Pattyn and twenty others. Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). <em>The Cryosphere</em>, 2:95–108, 2008.</p>
</dd>
<dt class="label" id="id179"><span class="brackets">123</span></dt>
<dd><p>O. Gagliardini and T. Zwinger. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. <em>The Cryosphere</em>, 2(1):67–76, 2008. <a class="reference external" href="https://doi.org/10.5194/tc-2-67-2008">doi:10.5194/tc-2-67-2008</a>.</p>
</dd>
<dt class="label" id="id172"><span class="brackets">124</span></dt>
<dd><p>Ralf Greve, Ryoji Takahama, and Reinhard Calov. Simulation of large-scale ice-sheet surges: the ISMIP-HEINO experiments. <em>Polar Meteorol. Glaciol.</em>, 20:1–15, 2006.</p>
</dd>
<dt class="label" id="id291"><span class="brackets">125</span></dt>
<dd><p>F. Pattyn, C. Schoof, L. Perichon, and 15 others. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. <em>The Cryosphere</em>, 6:573–588, 2012. <a class="reference external" href="https://doi.org/10.5194/tc-6-573-2012">doi:10.5194/tc-6-573-2012</a>.</p>
</dd>
<dt class="label" id="id292"><span class="brackets">126</span></dt>
<dd><p>F. Pattyn, L. Perichon, G. Durand, and 25 others. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. <em>J. Glaciol.</em>, 59(215):410–422, 2013.</p>
</dd>
<dt class="label" id="id412"><span class="brackets">127</span></dt>
<dd><p>C. Schoof. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. <em>J. Fluid Mech.</em>, 573:27–55, 2007.</p>
</dd>
<dt class="label" id="id155"><span class="brackets">128</span></dt>
<dd><p>D. Goldberg, D. M. Holland, and C. Schoof. Grounding line movement and ice shelf buttressing in marine ice sheets. <em>J. Geophys. Res.</em>, 2009. <a class="reference external" href="https://doi.org/10.1029/2008JF001227">doi:10.1029/2008JF001227</a>.</p>
</dd>
<dt class="label" id="id180"><span class="brackets">129</span></dt>
<dd><p>Frank Pattyn and Tony Payne. ISMIP-HOM Ice Sheet Model Intercomparison Project: benchmark experiments for Higher-Order ice sheet Models. 2008. URL: <a class="reference external" href="https://frank.pattyn.web.ulb.be/ismip/welcome.html">https://frank.pattyn.web.ulb.be/ismip/welcome.html</a>.</p>
</dd>
<dt class="label" id="id470"><span class="brackets">130</span></dt>
<dd><p>Pieter Wesseling. <em>Principles of Computational Fluid Dynamics</em>. Springer-Verlag, 2001.</p>
</dd>
<dt class="label" id="id389"><span class="brackets">131</span></dt>
<dd><p>P.J. Roache. <em>Verification and Validation in Computational Science and Engineering</em>. Hermosa Publishers, Albuquerque, New Mexico, 1998.</p>
</dd>
<dt class="label" id="id89"><span class="brackets">132</span></dt>
<dd><p>E. Bueler. An exact solution to the temperature equation in a column of ice and bedrock. preprint \texttt arXiv:0710.1314, 2007.</p>
</dd>
<dt class="label" id="id403"><span class="brackets">133</span></dt>
<dd><p>R. Sayag and M. G. Worster. Axisymmetric gravity currents of power-law fluids over a rigid horizontal surface. <em>J. Fluid Mech.</em>, 2013. <a class="reference external" href="https://doi.org/10.1017/jfm.2012.545">doi:10.1017/jfm.2012.545</a>.</p>
</dd>
<dt class="label" id="id402"><span class="brackets">134</span></dt>
<dd><p>R. Sayag, S. S. Pegler, and M. G. Worster. Floating extensional flows. <em>Physics of Fluids</em>, 2012. <a class="reference external" href="https://doi.org/10.1063/1.4747184">doi:10.1063/1.4747184</a>.</p>
</dd>
<dt class="label" id="id373"><span class="brackets">135</span></dt>
<dd><p>C. R. Bentley. Glaciological studies on the Ross Ice Shelf, Antarctica, 1973–1978. <em>Antarctic Research Series</em>, 42(2):21–53, 1984.</p>
</dd>
<dt class="label" id="id395"><span class="brackets">136</span></dt>
<dd><p>V. Rommelaere and D. R. MacAyeal. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. <em>Ann. Glaciol.</em>, 24:43–48, 1997.</p>
</dd>
<dt class="label" id="id213"><span class="brackets">137</span></dt>
<dd><p>A. Humbert, R. Greve, and K. Hutter. Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. <em>J. Geophys. Res.</em>, 2005. <a class="reference external" href="https://doi.org/10.1029/2004JF000170">doi:10.1029/2004JF000170</a>.</p>
</dd>
<dt class="label" id="id270"><span class="brackets">138</span></dt>
<dd><p>A. M. Le Brocq, A. J. Payne, and A. Vieli. An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). <em>Earth System Science Data</em>, 2(2):247–260, 2010. <a class="reference external" href="https://doi.org/10.5194/essd-2-247-2010">doi:10.5194/essd-2-247-2010</a>.</p>
</dd>
<dt class="label" id="id384"><span class="brackets">139</span></dt>
<dd><p>E. Rignot, J. Mouginot, and B. Scheuchl. Ice flow of the Antarctic Ice Sheet. <em>Science</em>, 333(6048):1427–1430, 2011. <a class="reference external" href="https://doi.org/10.1126/science.1208336">doi:10.1126/science.1208336</a>.</p>
</dd>
<dt class="label" id="id238"><span class="brackets">140</span></dt>
<dd><p>I. Joughin, W. Abdalati, and M. Fahnestock. Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. <em>Nature</em>, 432(23):608–610, 2004.</p>
</dd>
<dt class="label" id="id207"><span class="brackets">141</span></dt>
<dd><p>D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. <em>Nature Geoscience</em>, 1:659–664, 2008. <a class="reference external" href="https://doi.org/10.1038/ngeo316">doi:10.1038/ngeo316</a>.</p>
</dd>
<dt class="label" id="id289"><span class="brackets">142</span></dt>
<dd><p>M. Lüthi, M. Fahnestock, and M. Truffer. Correspondence: calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbrae, Greenland. <em>J. Glaciol.</em>, 55(191):563\,–\,566, 2009.</p>
</dd>
<dt class="label" id="id115"><span class="brackets">143</span></dt>
<dd><p>D. DellaGiustina. Regional modeling of Greenland's outlet glaciers with the Parallel Ice Sheet Model. Master's thesis, University of Alaska, Fairbanks, 2011. M.S. Computational Physics.</p>
</dd>
<dt class="label" id="id245"><span class="brackets">144</span></dt>
<dd><p>I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon. Greenland flow variability from ice-sheet-wide velocity mapping. <em>J. Glaciol.</em>, 56(197):415–430, 2010.</p>
</dd>
<dt class="label" id="id134"><span class="brackets">145</span></dt>
<dd><p>R. S. Fausto, A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen. A new present-day temperature parameterization for Greenland. <em>J. Glaciol.</em>, 55(189):95–105, 2009.</p>
</dd>
<dt class="label" id="id212"><span class="brackets">146</span></dt>
<dd><p>Christina L. Hulbe and Douglas R. MacAyeal. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. <em>J. Geophys. Res.</em>, 104(B11):25349–25366, 1999.</p>
</dd>
<dt class="label" id="id288"><span class="brackets">147</span></dt>
<dd><p>M. Lüthi, M. Funk, A. Iken, S. Gogineni, and M. Truffer. Mechanisms of fast flow in Jakobshavns Isbræ, Greenland; Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. <em>J. Glaciol.</em>, 48(162):369\,–\,385, 2002.</p>
</dd>
<dt class="label" id="id386"><span class="brackets">148</span></dt>
<dd><p>C. Ritz. EISMINT Intercomparison Experiment: Comparison of existing Greenland models. 1997. URL: <a class="reference external" href="https://web.archive.org/web/20220120054655/http://homepages.vub.ac.be/~phuybrec/eismint/greenland.html">https://web.archive.org/web/20220120054655/http://homepages.vub.ac.be/~phuybrec/eismint/greenland.html</a>.</p>
</dd>
<dt class="label" id="id475"><span class="brackets">149</span></dt>
<dd><p>Yun Xu, Eric Rignot, Ian Fenty, Dimitris Menemenlis, and M. Mar Flexas. Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. <em>Geophysical Research Letters</em>, 40(17):4648–4653, 2013. <a class="reference external" href="https://doi.org/10.1002/grl.50825">doi:10.1002/grl.50825</a>.</p>
</dd>
<dt class="label" id="id39"><span class="brackets">150</span></dt>
<dd><p>Andy Aschwanden, Mark A Fahnestock, Martin Truffer, Douglas J Brinkerhoff, Regine Hock, Constantine Khroulev, Ruth Mottram, and S Abbas Khan. Contribution of the greenland ice sheet to sea level over the next millennium. <em>Science Advances</em>, 5(6):eaav9396, 2019.</p>
</dd>
<dt class="label" id="id206"><span class="brackets">151</span></dt>
<dd><p>David M Holland and Adrian Jenkins. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. <em>Journal of Physical Oceanography</em>, 29(8):1787–1800, 1999.</p>
</dd>
<dt class="label" id="id3"><span class="brackets">152</span></dt>
<dd><p>Greg Kopp and Judith L. Lean. A new, lower value of total solar irradiance: Evidence and climate significance. <em>Geophysical Research Letters</em>, jan 2011. <a class="reference external" href="https://doi.org/10.1029/2010gl045777">doi:10.1029/2010gl045777</a>.</p>
</dd>
<dt class="label" id="id96"><span class="brackets">153</span></dt>
<dd><p>Reinhard Calov and Ralf Greve. Correspondence: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. <em>J. Glaciol</em>, 51(172):173–175, 2005.</p>
</dd>
<dt class="label" id="id394"><span class="brackets">154</span></dt>
<dd><p>I. Rogozhina and D. Rau. Vital role of daily temperature variability in surface mass balance parameterizations of the greenland ice sheet. <em>The Cryosphere</em>, 8:575–585, 2014. <a class="reference external" href="https://doi.org/10.5194/tc-8-575-2014">doi:10.5194/tc-8-575-2014</a>.</p>
</dd>
<dt class="label" id="id421"><span class="brackets">155</span></dt>
<dd><p>J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree day surface melt model. <em>J. Glaciol.</em>, 59(218):1202–1204, 2013. <a class="reference external" href="https://doi.org/10.3189/2013JoG13J081">doi:10.3189/2013JoG13J081</a>.</p>
</dd>
<dt class="label" id="id422"><span class="brackets">156</span></dt>
<dd><p>J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice sheet surfaces. <em>J. Glaciol.</em>, 2014. <a class="reference external" href="https://doi.org/10.3189/2014JoG14J036">doi:10.3189/2014JoG14J036</a>.</p>
</dd>
<dt class="label" id="id12"><span class="brackets">157</span></dt>
<dd><p>M. Zeitz, R. Reese, J. Beckmann, U. Krebs-Kanzow, and R. Winkelmann. Impact of the melt-albedo feedback on the future evolution of the Greenland ice sheet with PISM-dEBM-simple. <em>The Cryosphere</em>, 15(12):5739–5764, 2021. URL: <a class="reference external" href="https://tc.copernicus.org/articles/15/5739/2021/">https://tc.copernicus.org/articles/15/5739/2021/</a>, <a class="reference external" href="https://doi.org/10.5194/tc-15-5739-2021">doi:10.5194/tc-15-5739-2021</a>.</p>
</dd>
<dt class="label" id="id11"><span class="brackets">158</span></dt>
<dd><p>Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann. Brief communication: An ice surface melt scheme including the diurnal cycle of solar radiation. <em>The Cryosphere</em>, 12(12):3923–3930, dec 2018. <a class="reference external" href="https://doi.org/10.5194/tc-12-3923-2018">doi:10.5194/tc-12-3923-2018</a>.</p>
</dd>
<dt class="label" id="id2"><span class="brackets">159</span></dt>
<dd><p>Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann. The evolution of future Antarctic surface melt using PISM-dEBM-simple. <em>The Cryosphere</em>, 17(11):4571–4599, nov 2023. <a class="reference external" href="https://doi.org/10.5194/tc-17-4571-2023">doi:10.5194/tc-17-4571-2023</a>.</p>
</dd>
<dt class="label" id="id10"><span class="brackets">160</span></dt>
<dd><p>K. N. Liou. <em>Introduction to Atmospheric Radiation</em>. Elsevier Science & Technology Books, 2002. ISBN 9780080491677.</p>
</dd>
<dt class="label" id="id9"><span class="brackets">161</span></dt>
<dd><p>André L. Berger. Long-term variations of daily insolation and quaternary climatic changes. <em>Journal of the Atmospheric Sciences</em>, 35(12):2362–2367, dec 1978. <a class="reference external" href="https://doi.org/10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2">doi:10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2</a>.</p>
</dd>
<dt class="label" id="id63"><span class="brackets">162</span></dt>
<dd><p>Ronald B Smith and Idar Barstad. A linear theory of orographic precipitation. <em>Journal of the Atmospheric Sciences</em>, 61(12):1377–1391, 2004.</p>
</dd>
<dt class="label" id="id64"><span class="brackets">163</span></dt>
<dd><p>Ronald B Smith, Idar Barstad, and Laurent Bonneau. Orographic precipitation and oregon’s climate transition. <em>Journal of the Atmospheric Sciences</em>, 62(1):177–191, 2005.</p>
</dd>
<dt class="label" id="id68"><span class="brackets">164</span></dt>
<dd><p>A Beckmann and H Goosse. A parameterization of ice shelf-ocean interaction for climate models. <em>Ocean Modelling</em>, 5(2):157–170, 2003. URL: <a class="reference external" href="https://linkinghub.elsevier.com/retrieve/pii/S1463500302000197">https://linkinghub.elsevier.com/retrieve/pii/S1463500302000197</a>.</p>
</dd>
<dt class="label" id="id190"><span class="brackets">165</span></dt>
<dd><p>Hartmut H. Hellmer, Stanley S. Jacobs, and Adrian Jenkins. <em>Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea</em>. American Geophysical Union, 1998.</p>
</dd>
<dt class="label" id="id334"><span class="brackets">166</span></dt>
<dd><p>Dirk Olbers and Hartmut Hellmer. A box model of circulation and melting in ice shelf caverns. <em>Ocean Dynamics</em>, 60(1):141–153, 2010.</p>
</dd>
<dt class="label" id="id189"><span class="brackets">167</span></dt>
<dd><p>HH Hellmer and DJ Olbers. A two-dimensional model for the thermohaline circulation under an ice shelf. <em>Antarctic Science</em>, 1(04):325–336, 1989.</p>
</dd>
<dt class="label" id="id280"><span class="brackets">168</span></dt>
<dd><p>E. L. Lewis and R. G. Perkin. Ice pumps and their rates. <em>Journal of Geophysical Research: Oceans</em>, 91(C10):11756–11762, 1986. <a class="reference external" href="https://doi.org/10.1029/JC091iC10p11756">doi:10.1029/JC091iC10p11756</a>.</p>
</dd>
<dt class="label" id="id381"><span class="brackets">169</span></dt>
<dd><p>Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann. Antarctic sub-shelf melt rates via pico. <em>The Cryosphere</em>, 12(6):1969–1985, 2018. <a class="reference external" href="https://doi.org/10.5194/tc-12-1969-2018">doi:10.5194/tc-12-1969-2018</a>.</p>
</dd>
<dt class="label" id="id15"><span class="brackets">170</span></dt>
<dd><p>J. Krug, G. Durand, O. Gagliardini, and J. Weiss. Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. <em>The Cryosphere</em>, 9(3):989–1003, may 2015. <a class="reference external" href="https://doi.org/10.5194/tc-9-989-2015">doi:10.5194/tc-9-989-2015</a>.</p>
</dd>
<dt class="label" id="id232"><span class="brackets">171</span></dt>
<dd><p>D. Jenssen. A three–dimensional polar ice–sheet model. <em>J. Glaciol.</em>, 18:373–389, 1977.</p>
</dd>
<dt class="label" id="id434"><span class="brackets">172</span></dt>
<dd><p>John C. Strikwerda. <em>Finite Difference Schemes and Partial Differential Equations</em>. Wadsworth, Pacific Grove, California, 1989.</p>
</dd>
<dt class="label" id="id139"><span class="brackets">173</span></dt>
<dd><p>Arne Foldvik and Thor Kvinge. Conditional instability of sea water at the freezing point. In <em>Deep Sea Research and Oceanographic Abstracts</em>, volume 21, 169–174. Elsevier, 1974.</p>
</dd>
<dt class="label" id="id464"><span class="brackets">174</span></dt>
<dd><p>Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter. The Finite Element Sea ice-Ocean Model (FESOM): formulation of an unstructured-mesh ocean general circulation model. <em>Geoscientific Model Development Discussions</em>, 6:3893–3976, July 2013. <a class="reference external" href="https://doi.org/10.5194/gmdd-6-3893-2013">doi:10.5194/gmdd-6-3893-2013</a>.</p>
</dd>
<dt class="label" id="id22"><span class="brackets">175</span></dt>
<dd><p>Irina K. Tezaur, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, and Stephen F. Price. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis. <em>Geoscientific Model Development</em>, 2015. <a class="reference external" href="https://doi.org/10.5194/gmd-8-1197-2015">doi:10.5194/gmd-8-1197-2015</a>.</p>
</dd>
<dt class="label" id="id16"><span class="brackets">176</span></dt>
<dd><p>Mauro Perego, Max Gunzburger, and John Burkardt. Parallel finite-element implementation for higher-order ice-sheet models. <em>Journal of Glaciology</em>, 58(207):76–88, 2012. <a class="reference external" href="https://doi.org/10.3189/2012JoG11J063">doi:10.3189/2012JoG11J063</a>.</p>
</dd>
<dt class="label" id="id118"><span class="brackets">177</span></dt>
<dd><p>John K. Dukowicz, Stephen F. Price, and William H. Lipscomb. Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action. <em>Journal of Glaciology</em>, 56(197):480–496, 2010. <a class="reference external" href="https://doi.org/10.3189/002214310792447851">doi:10.3189/002214310792447851</a>.</p>
</dd>
<dt class="label" id="id18"><span class="brackets">178</span></dt>
<dd><p>H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. Hydrostatic grounding line parameterization in ice sheet models. <em>The Cryosphere</em>, 8(6):2075–2087, 2014. <a class="reference external" href="https://doi.org/10.5194/tc-8-2075-2014">doi:10.5194/tc-8-2075-2014</a>.</p>
</dd>
<dt class="label" id="id17"><span class="brackets">179</span></dt>
<dd><p>William L. Briggs, Van Emden Henson, and Steve F. McCormick. <em>A multigrid tutorial</em>. SIAM, 2000.</p>
</dd>
<dt class="label" id="id500"><span class="brackets">180</span></dt>
<dd><p>C. J. van der Veen. <em>Fundamentals of Glacier Dynamics</em>. CRC Press, 2nd edition, 2013.</p>
</dd>
</dl>
</p>
</section>
<hr>
<table style="width: 100%">
<tr>
<td style="text-align: left; width: 30%">
<a class="reference internal" href="authorship.html">Previous</a>
</td>
<td style="text-align: center; width: 30%">
</td>
<td style="text-align: right; width: 30%">
</td>
</tr>
</table>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo">
<a href="index.html">
<img class="logo" src="_static/pism-logo.png" alt="Logo"/>
</a>
</p>
<h3>Navigation</h3>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="acknowledgements.html">Acknowledgements</a></li>
<li class="toctree-l1"><a class="reference internal" href="installation/index.html">Installing PISM</a></li>
<li class="toctree-l1"><a class="reference internal" href="manual/index.html">PISM User’s Manual</a></li>
<li class="toctree-l1"><a class="reference internal" href="climate_forcing/index.html">Climate forcing</a></li>
<li class="toctree-l1"><a class="reference internal" href="technical/index.html">Technical notes</a></li>
<li class="toctree-l1"><a class="reference internal" href="contributing/index.html">Contributing to PISM</a></li>
<li class="toctree-l1"><a class="reference internal" href="authorship.html">Authorship</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">References</a></li>
</ul>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
Git revision v2.1.1
committed by Constantine Khrulev
on 2024-12-04 13:36:58 -0900 |
© 2004--2023, the PISM authors.
</div>
</body>
</html>