-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_cost_function.m
30 lines (22 loc) · 1.08 KB
/
rec_cost_function.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function [J, grad] = rec_cost_function(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
htheta=X*theta;
J+=sum((1/(2*m))*((htheta-y).^2));
J+=(1/(2*m))*lambda*sum(theta.^2)-(1/(2*m))*lambda*theta(1)^2;
grad=(1/m)*(((htheta-y)'*X)') +(1/m)*lambda*theta;
grad(1)-=(1/m)*lambda*theta(1);
% =============================================================
end