-
Notifications
You must be signed in to change notification settings - Fork 5
/
app.py
85 lines (69 loc) · 2.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import re
from io import BytesIO
from flask import Flask, send_file, request
from PIL import Image
import requests
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
import os
PATH_TO_CKPT = '/opt/tensorflow-models-object_detection/ssd_mobilenet_v1_coco_11_06_2017/frozen_inference_graph.pb'
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
PATH_TO_LABELS = '/opt/tensorflow-models/object_detection/data/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
print('Loaded')
app = Flask(__name__)
def image2array(image):
(w, h) = image.size
return np.array(image.getdata()).reshape((h, w, 3)).astype(np.uint8)
def array2image(arr):
return Image.fromarray(np.uint8(arr))
def detect_objects(sess, image):
'''Plots the object detection result for a given image.'''
image_np = image2array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
boxes = np.squeeze(boxes)
classes = np.squeeze(classes).astype(np.int32)
scores = np.squeeze(scores)
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return array2image(image_np)
@app.route('/detect_objects')
def detect():
default_url = 'http://thecatapi.com/api/images/get?format=src&type=jpg'
url = request.args.get('url', default_url)
r = requests.get(url)
image = Image.open(BytesIO(r.content))
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image = detect_objects(sess, image)
byte_io = BytesIO()
image.save(byte_io, 'JPEG')
byte_io.seek(0)
return send_file(byte_io, mimetype='image/jpeg')
if __name__ == '__main__':
app.run(debug=True)