Skip to content

Latest commit

 

History

History
85 lines (59 loc) · 2.21 KB

README.md

File metadata and controls

85 lines (59 loc) · 2.21 KB

Classification of American Sign Language

Our goal was to design a classifier that, given an image, is able to understand and recognize the American sign language (ASL) and output the right character represented by the sign.

Table of contents

Development Setup

Requirements

conda create --name asl python==3.7.11
conda activate asl
pip install -r requirements.txt

Download Dataset

$ cd dataset
$ python dataset_download.py

Run

python main.py --data-aug  DATA-AUG --target-size TARGET-SIZE --epochs EPOCHS --batch-size BATCH-SIZE --lr LR --name-model NAME-MODEL --fine-tune FINE-TUNE --only-test ONLY-TEST

where:

  • DATA-AUG: data aumentation, default is True
  • TARGET-SIZE: target size of the image, default is (100, 100)
  • EPOCHS: number of epochs, default is 50
  • BATCH-SIZE: batch size, default is 64
  • LR: learning rate, default is 0.0001
  • NAME-MODEL: name of model, defaul is VGG19
  • FINE-TUNE: fine tuning, default is False
  • ONLY-TEST: only test, default is False

for example, for training

python main.py

for testing:

python main.py --only-test True

Best Model

portfolio-1

Demo

ASL.mp4

Slides

Credits