forked from pedvide/ADC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ADC_Module.h
762 lines (666 loc) · 26.1 KB
/
ADC_Module.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/* Teensy 4.x, 3.x, LC ADC library
* https://github.com/pedvide/ADC
* Copyright (c) 2020 Pedro Villanueva
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* ADC_Module.h: Declarations of the fuctions of a Teensy 3.x, LC ADC module
*
*/
/*! \page adc_module ADC Module
Control each ADC_Module independently.
See the ADC_Module class for all methods.
*/
#ifndef ADC_MODULE_H
#define ADC_MODULE_H
#include <Arduino.h>
#include <settings_defines.h>
#include <atomic.h>
using ADC_Error::ADC_ERROR;
using namespace ADC_settings;
// debug mode: blink the led light
#define ADC_debug 0
/** Class ADC_Module: Implements all functions of the Teensy 3.x, LC analog to digital converter
*
*/
class ADC_Module
{
public:
#if ADC_DIFF_PAIRS > 0
//! \cond internal
//! Dictionary with the differential pins as keys and the SC1A number as values
/** Internal, do not use.
*/
struct ADC_NLIST
{
//! Pin and corresponding SC1A value.
uint8_t pin, sc1a;
};
#endif
//! \endcond
#if ADC_DIFF_PAIRS > 0
//! Constructor
/** Pass the ADC number and the Channel number to SC1A number arrays.
* \param ADC_number Number of the ADC module, from 0.
* \param a_channel2sc1a contains an index that pairs each pin to its SC1A number (used to start a conversion on that pin)
* \param a_diff_table is similar to a_channel2sc1a, but for differential pins.
* \param a_adc_regs pointer to start of the ADC registers
*/
ADC_Module(uint8_t ADC_number,
const uint8_t *const a_channel2sc1a,
const ADC_NLIST *const a_diff_table,
ADC_REGS_t &a_adc_regs);
#else
//! Constructor
/** Pass the ADC number and the Channel number to SC1A number arrays.
* \param ADC_number Number of the ADC module, from 0.
* \param a_channel2sc1a contains an index that pairs each pin to its SC1A number (used to start a conversion on that pin)
* \param a_adc_regs pointer to start of the ADC registers
*/
ADC_Module(uint8_t ADC_number,
const uint8_t *const a_channel2sc1a,
ADC_REGS_t &a_adc_regs);
#endif
//! Starts the calibration sequence, waits until it's done and writes the results
/** Usually it's not necessary to call this function directly, but do it if the "environment" changed
* significantly since the program was started.
*/
void recalibrate();
//! Starts the calibration sequence
void calibrate();
//! Waits until calibration is finished and writes the corresponding registers
void wait_for_cal();
/////////////// METHODS TO SET/GET SETTINGS OF THE ADC ////////////////////
//! Set the voltage reference you prefer, default is vcc
/*!
* \param ref_type can be ADC_REFERENCE::REF_3V3, ADC_REFERENCE::REF_1V2 (not for Teensy LC) or ADC_REFERENCE::REF_EXT
*
* It recalibrates at the end.
*/
void setReference(ADC_REFERENCE ref_type);
//! Change the resolution of the measurement.
/*!
* \param bits is the number of bits of resolution.
* For single-ended measurements: 8, 10, 12 or 16 bits.
* For differential measurements: 9, 11, 13 or 16 bits.
* If you want something in between (11 bits single-ended for example) select the immediate higher
* and shift the result one to the right.
*
* Whenever you change the resolution, change also the comparison values (if you use them).
*/
void setResolution(uint8_t bits);
//! Returns the resolution of the ADC_Module.
/**
* \return the resolution of the ADC_Module.
*/
uint8_t getResolution();
//! Returns the maximum value for a measurement: 2^res-1.
/**
* \return the maximum value for a measurement: 2^res-1.
*/
uint32_t getMaxValue();
//! Sets the conversion speed (changes the ADC clock, ADCK)
/**
* \param speed can be any from the ADC_CONVERSION_SPEED enum: VERY_LOW_SPEED, LOW_SPEED, MED_SPEED, HIGH_SPEED_16BITS, HIGH_SPEED, VERY_HIGH_SPEED,
* ADACK_2_4, ADACK_4_0, ADACK_5_2 or ADACK_6_2.
*
* VERY_LOW_SPEED is guaranteed to be the lowest possible speed within specs for resolutions less than 16 bits (higher than 1 MHz),
* it's different from LOW_SPEED only for 24, 4 or 2 MHz bus frequency.
* LOW_SPEED is guaranteed to be the lowest possible speed within specs for all resolutions (higher than 2 MHz).
* MED_SPEED is always >= LOW_SPEED and <= HIGH_SPEED.
* HIGH_SPEED_16BITS is guaranteed to be the highest possible speed within specs for all resolutions (lower or eq than 12 MHz).
* HIGH_SPEED is guaranteed to be the highest possible speed within specs for resolutions less than 16 bits (lower or eq than 18 MHz).
* VERY_HIGH_SPEED may be out of specs, it's different from HIGH_SPEED only for 48, 40 or 24 MHz bus frequency.
*
* Additionally the conversion speed can also be ADACK_2_4, ADACK_4_0, ADACK_5_2 and ADACK_6_2,
* where the numbers are the frequency of the ADC clock (ADCK) in MHz and are independent on the bus speed.
* This is useful if you are using the Teensy at a very low clock frequency but want faster conversions,
* but if F_BUS<F_ADCK, you can't use VERY_HIGH_SPEED for sampling speed.
*/
void setConversionSpeed(ADC_CONVERSION_SPEED speed);
//! Sets the sampling speed
/** Increase the sampling speed for low impedance sources, decrease it for higher impedance ones.
* \param speed can be any of the ADC_SAMPLING_SPEED enum: VERY_LOW_SPEED, LOW_SPEED, MED_SPEED, HIGH_SPEED or VERY_HIGH_SPEED.
*
* VERY_LOW_SPEED is the lowest possible sampling speed (+24 ADCK).
* LOW_SPEED adds +16 ADCK.
* MED_SPEED adds +10 ADCK.
* HIGH_SPEED adds +6 ADCK.
* VERY_HIGH_SPEED is the highest possible sampling speed (0 ADCK added).
*/
void setSamplingSpeed(ADC_SAMPLING_SPEED speed);
//! Set the number of averages
/*!
* \param num can be 0, 4, 8, 16 or 32.
*
* It doesn't recalibrate at the end.
*/
void setAveraging(uint8_t num);
//! Enable interrupts
/** An IRQ_ADCx Interrupt will be raised when the conversion is completed
* (including hardware averages and if the comparison (if any) is true).
* \param isr function (returns void and accepts no arguments) that will be executed after an interrupt.
* \param priority Interrupt priority, highest is 0, lowest is 255.
*/
void enableInterrupts(void (*isr)(void), uint8_t priority = 255);
//! Disable interrupts
void disableInterrupts();
#ifdef ADC_USE_DMA
//! Enable DMA request
/** An ADC DMA request will be raised when the conversion is completed
* (including hardware averages and if the comparison (if any) is true).
*/
void enableDMA();
//! Disable ADC DMA request
void disableDMA();
#endif
//! Enable the compare function to a single value
/** A conversion will be completed only when the ADC value
* is >= compValue (greaterThan=1) or < compValue (greaterThan=0)
* Call it after changing the resolution
* Use with interrupts or poll conversion completion with isComplete()
* \param compValue value to compare
* \param greaterThan true or false
*/
void enableCompare(int16_t compValue, bool greaterThan);
//! Enable the compare function to a range
/** A conversion will be completed only when the ADC value is inside (insideRange=1) or outside (=0)
* the range given by (lowerLimit, upperLimit),including (inclusive=1) the limits or not (inclusive=0).
* See Table 31-78, p. 617 of the freescale manual.
* Call it after changing the resolution
* Use with interrupts or poll conversion completion with isComplete()
* \param lowerLimit lower value to compare
* \param upperLimit upper value to compare
* \param insideRange true or false
* \param inclusive true or false
*/
void enableCompareRange(int16_t lowerLimit, int16_t upperLimit, bool insideRange, bool inclusive);
//! Disable the compare function
void disableCompare();
#ifdef ADC_USE_PGA
//! Enable and set PGA
/** Enables the PGA and sets the gain
* Use only for signals lower than 1.2 V and only in differential mode
* \param gain can be 1, 2, 4, 8, 16, 32 or 64
*/
void enablePGA(uint8_t gain);
//! Returns the PGA level
/**
* \return PGA level from 1 to 64
*/
uint8_t getPGA();
//! Disable PGA
void disablePGA();
#endif
//! Set continuous conversion mode
void continuousMode() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ADCO);
#else
atomic::setBitFlag(adc_regs.SC3, ADC_SC3_ADCO);
#endif
}
//! Set single-shot conversion mode
void singleMode() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_ADCO);
#else
atomic::clearBitFlag(adc_regs.SC3, ADC_SC3_ADCO);
#endif
}
//! Set single-ended conversion mode
void singleEndedMode() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
// Teensy 4 is always single-ended
#else
atomic::clearBitFlag(adc_regs.SC1A, ADC_SC1_DIFF);
#endif
}
#if ADC_DIFF_PAIRS > 0
//! Set differential conversion mode
void differentialMode() __attribute__((always_inline))
{
atomic::setBitFlag(adc_regs.SC1A, ADC_SC1_DIFF);
}
#endif
//! Use software to trigger the ADC, this is the most common setting
void setSoftwareTrigger() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADTRG);
#else
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_ADTRG);
#endif
}
//! Use hardware to trigger the ADC
void setHardwareTrigger() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADTRG);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ADTRG);
#endif
}
////////////// INFORMATION ABOUT THE STATE OF THE ADC /////////////////
//! Is the ADC converting at the moment?
/**
* \return true or false
*/
volatile bool isConverting() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
return atomic::getBitFlag(adc_regs.GS, ADC_GS_ADACT);
#else
//return (ADC_SC2_adact);
return atomic::getBitFlag(adc_regs.SC2, ADC_SC2_ADACT);
//return ((adc_regs.SC2) & ADC_SC2_ADACT) >> 7;
#endif
}
//! Is an ADC conversion ready?
/**
* \return true if yes, false if not.
* When a value is read this function returns false until a new value exists,
* so it only makes sense to call it before analogReadContinuous() or readSingle()
*/
volatile bool isComplete() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
return atomic::getBitFlag(adc_regs.HS, ADC_HS_COCO0);
#else
//return (ADC_SC1A_coco);
return atomic::getBitFlag(adc_regs.SC1A, ADC_SC1_COCO);
//return ((adc_regs.SC1A) & ADC_SC1_COCO) >> 7;
#endif
}
#if ADC_DIFF_PAIRS > 0
//! Is the ADC in differential mode?
/**
* \return true or false
*/
volatile bool isDifferential() __attribute__((always_inline))
{
//return ((adc_regs.SC1A) & ADC_SC1_DIFF) >> 5;
return atomic::getBitFlag(adc_regs.SC1A, ADC_SC1_DIFF);
}
#endif
//! Is the ADC in continuous mode?
/**
* \return true or false
*/
volatile bool isContinuous() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
return atomic::getBitFlag(adc_regs.GC, ADC_GC_ADCO);
#else
//return (ADC_SC3_adco);
return atomic::getBitFlag(adc_regs.SC3, ADC_SC3_ADCO);
//return ((adc_regs.SC3) & ADC_SC3_ADCO) >> 3;
#endif
}
#ifdef ADC_USE_PGA
//! Is the PGA function enabled?
/**
* \return true or false
*/
volatile bool isPGAEnabled() __attribute__((always_inline))
{
return atomic::getBitFlag(adc_regs.PGA, ADC_PGA_PGAEN);
}
#endif
//////////////// INFORMATION ABOUT VALID PINS //////////////////
//! Check whether the pin is a valid analog pin
/**
* \param pin to check.
* \return true if the pin is valid, false otherwise.
*/
bool checkPin(uint8_t pin);
//! Check whether the pins are a valid analog differential pair of pins
/** If PGA is enabled it also checks that this ADCx can use PGA on this pins
* \param pinP positive pin to check.
* \param pinN negative pin to check.
* \return true if the pin is valid, false otherwise.
*/
bool checkDifferentialPins(uint8_t pinP, uint8_t pinN);
//////////////// HELPER METHODS FOR CONVERSION /////////////////
//! Starts a single-ended conversion on the pin
/** It sets the mux correctly, doesn't do any of the checks on the pin and
* doesn't change the continuous conversion bit.
* \param pin to read.
*/
void startReadFast(uint8_t pin); // helper method
#if ADC_DIFF_PAIRS > 0
//! Starts a differential conversion on the pair of pins
/** It sets the mux correctly, doesn't do any of the checks on the pin and
* doesn't change the continuous conversion bit.
* \param pinP positive pin to read.
* \param pinN negative pin to read.
*/
void startDifferentialFast(uint8_t pinP, uint8_t pinN);
#endif
//////////////// BLOCKING CONVERSION METHODS //////////////////
//! Returns the analog value of the pin.
/** It waits until the value is read and then returns the result.
* If a comparison has been set up and fails, it will return ADC_ERROR_VALUE.
* This function is interrupt safe, so it will restore the adc to the state it was before being called
* \param pin pin to read.
* \return the value of the pin.
*/
int analogRead(uint8_t pin);
//! Returns the analog value of the special internal source, such as the temperature sensor.
/** It calls analogRead(uint8_t pin) internally, with the correct value for the pin for all boards.
* Possible values:
* TEMP_SENSOR, Temperature sensor.
* VREF_OUT, 1.2 V reference (switch on first using VREF.h).
* BANDGAP, BANDGAP (switch on first using VREF.h).
* VREFH, High VREF.
* VREFL, Low VREF.
* \param pin ADC_INTERNAL_SOURCE to read.
* \return the value of the pin.
*/
int analogRead(ADC_INTERNAL_SOURCE pin) __attribute__((always_inline))
{
return analogRead(static_cast<uint8_t>(pin));
}
#if ADC_DIFF_PAIRS > 0
//! Reads the differential analog value of two pins (pinP - pinN).
/** It waits until the value is read and then returns the result.
* If a comparison has been set up and fails, it will return ADC_ERROR_DIFF_VALUE.
* \param pinP must be A10 or A12.
* \param pinN must be A11 (if pinP=A10) or A13 (if pinP=A12).
* \return the difference between the pins if they are valid, othewise returns ADC_ERROR_DIFF_VALUE.
* This function is interrupt safe, so it will restore the adc to the state it was before being called
*/
int analogReadDifferential(uint8_t pinP, uint8_t pinN);
#endif
/////////////// NON-BLOCKING CONVERSION METHODS //////////////
//! Starts an analog measurement on the pin and enables interrupts.
/** It returns immediately, get value with readSingle().
* If this function interrupts a measurement, it stores the settings in adc_config
* \param pin pin to read.
* \return true if the pin is valid, false otherwise.
*/
bool startSingleRead(uint8_t pin);
#if ADC_DIFF_PAIRS > 0
//! Start a differential conversion between two pins (pinP - pinN) and enables interrupts.
/** It returns immediately, get value with readSingle().
* If this function interrupts a measurement, it stores the settings in adc_config
* \param pinP must be A10 or A12.
* \param pinN must be A11 (if pinP=A10) or A13 (if pinP=A12).
* \return true if the pins are valid, false otherwise.
*/
bool startSingleDifferential(uint8_t pinP, uint8_t pinN);
#endif
//! Reads the analog value of a single conversion.
/** Set the conversion with with startSingleRead(pin) or startSingleDifferential(pinP, pinN).
* \return the converted value.
*/
int readSingle() __attribute__((always_inline))
{
return analogReadContinuous();
}
///////////// CONTINUOUS CONVERSION METHODS ////////////
//! Starts continuous conversion on the pin.
/** It returns as soon as the ADC is set, use analogReadContinuous() to read the value.
* \param pin can be any of the analog pins
* \return true if the pin is valid, false otherwise.
*/
bool startContinuous(uint8_t pin);
#if ADC_DIFF_PAIRS > 0
//! Starts continuous conversion between the pins (pinP-pinN).
/** It returns as soon as the ADC is set, use analogReadContinuous() to read the value.
* \param pinP must be A10 or A12.
* \param pinN must be A11 (if pinP=A10) or A13 (if pinP=A12).
* \return true if the pins are valid, false otherwise.
*/
bool startContinuousDifferential(uint8_t pinP, uint8_t pinN);
#endif
//! Reads the analog value of a continuous conversion.
/** Set the continuous conversion with with analogStartContinuous(pin) or startContinuousDifferential(pinP, pinN).
* \return the last converted value.
* If single-ended and 16 bits it's necessary to typecast it to an unsigned type (like uint16_t),
* otherwise values larger than 3.3/2 V are interpreted as negative!
*/
int analogReadContinuous() __attribute__((always_inline))
{
#ifdef ADC_TEENSY_4
return (int16_t)(int32_t)adc_regs.R0;
#else
return (int16_t)(int32_t)adc_regs.RA;
#endif
}
//! Stops continuous conversion
void stopContinuous();
//////////// FREQUENCY METHODS ////////
// The general API is:
// void startTimer(uint32_t freq)
// void stopTimer()
// uint32_t getTimerFrequency()
// For each board the best timer method will be selected
//////////// PDB ////////////////
//// Only works for Teensy 3.x not LC nor Tensy 4.0 (they don't have PDB)
#if defined(ADC_USE_PDB)
//! Start the default timer (PDB) triggering the ADC at the frequency
/** The default timer in this board is the PDB, you can also call it directly with startPDB().
* Call startSingleRead or startSingleDifferential on the pin that you want to measure before calling this function.
* See the example adc_pdb.ino.
* \param freq is the frequency of the ADC conversion, it can't be lower that 1 Hz
*/
void startTimer(uint32_t freq) __attribute__((always_inline)) { startPDB(freq); }
//! Start PDB triggering the ADC at the frequency
/** Call startSingleRead or startSingleDifferential on the pin that you want to measure before calling this function.
* See the example adc_pdb.ino.
* \param freq is the frequency of the ADC conversion, it can't be lower that 1 Hz
*/
void startPDB(uint32_t freq);
//! Stop the default timer (PDB)
void stopTimer() __attribute__((always_inline)) { stopPDB(); }
//! Stop the PDB
void stopPDB();
//! Return the default timer's (PDB) frequency
/** The default timer in this board is the PDB, you can also call it directly with getPDBFrequency().
* \return the timer's frequency in Hz.
*/
uint32_t getTimerFrequency() __attribute__((always_inline)) { return getPDBFrequency(); }
//! Return the PDB's frequency
/** Return the PDB's frequency
* \return the timer's frequency in Hz.
*/
uint32_t getPDBFrequency();
//////////// TIMER ////////////////
//// Only works for Teensy 3.x and 4 (not LC)
#elif defined(ADC_USE_QUAD_TIMER)
//! Start the default timer (QuadTimer) triggering the ADC at the frequency
/** The default timer in this board is the QuadTimer, you can also call it directly with startQuadTimer().
* Call startSingleRead or startSingleDifferential on the pin that you want to measure before calling this function.
* See the example adc_timer.ino.
* \param freq is the frequency of the ADC conversion, it can't be lower that 1 Hz
*/
void startTimer(uint32_t freq) __attribute__((always_inline)) { startQuadTimer(freq); }
//! Start a Quad timer to trigger the ADC at the frequency
/** Call startSingleRead or startSingleDifferential on the pin that you want to measure before calling this function.
* See the example adc_timer.ino.
* \param freq is the frequency of the ADC conversion, it can't be lower that 1 Hz
*/
void startQuadTimer(uint32_t freq);
//! Stop the default timer (QuadTimer)
void stopTimer() __attribute__((always_inline)) { stopQuadTimer(); }
//! Stop the Quad timer
void stopQuadTimer();
//! Return the default timer's (QuadTimer) frequency
/** The default timer in this board is the QuadTimer, you can also call it directly with getQuadTimerFrequency().
* \return the timer's frequency in Hz.
*/
uint32_t getTimerFrequency() __attribute__((always_inline)) { return getQuadTimerFrequency(); }
//! Return the Quad timer's frequency
/** Return the Quad timer's frequency
* \return the timer's frequency in Hz.
*/
uint32_t getQuadTimerFrequency();
#endif
//////// OTHER STUFF ///////////
//! Store the config of the adc
struct ADC_Config
{
//! ADC registers
#ifdef ADC_TEENSY_4
uint32_t savedHC0, savedCFG, savedGC, savedGS;
#else
uint32_t savedSC1A, savedSC2, savedSC3, savedCFG1, savedCFG2;
#endif
} adc_config;
//! Was the adc in use before a call?
uint8_t adcWasInUse;
/** Save config of the ADC to the ADC_Config struct
* \param config ADC_Config where the config will be stored
*/
void saveConfig(ADC_Config *config)
{
#ifdef ADC_TEENSY_4
config->savedHC0 = adc_regs.HC0;
config->savedCFG = adc_regs.CFG;
config->savedGC = adc_regs.GC;
config->savedGS = adc_regs.GS;
#else
config->savedSC1A = adc_regs.SC1A;
config->savedCFG1 = adc_regs.CFG1;
config->savedCFG2 = adc_regs.CFG2;
config->savedSC2 = adc_regs.SC2;
config->savedSC3 = adc_regs.SC3;
#endif
}
/** Load config to the ADC
* \param config ADC_Config from where the config will be loaded
*/
void loadConfig(const ADC_Config *config)
{
#ifdef ADC_TEENSY_4
adc_regs.HC0 = config->savedHC0;
adc_regs.CFG = config->savedCFG;
adc_regs.GC = config->savedGC;
adc_regs.GS = config->savedGS;
#else
adc_regs.CFG1 = config->savedCFG1;
adc_regs.CFG2 = config->savedCFG2;
adc_regs.SC2 = config->savedSC2;
adc_regs.SC3 = config->savedSC3;
adc_regs.SC1A = config->savedSC1A; // restore last
#endif
}
//! Number of measurements that the ADC is performing
uint8_t num_measurements;
//! This flag indicates that some kind of error took place
/** Use the defines at the beginning of this file to find out what caused the fail.
*/
volatile ADC_ERROR fail_flag;
//! Resets all errors from the ADC, if any.
void resetError()
{
ADC_Error::resetError(fail_flag);
}
//! Which adc is this?
const uint8_t ADC_num;
private:
// is set to 1 when the calibration procedure is taking place
uint8_t calibrating;
// the first calibration will use 32 averages and lowest speed,
// when this calibration is over the averages and speed will be set to default.
uint8_t init_calib;
// resolution
uint8_t analog_res_bits;
// maximum value possible 2^res-1
uint32_t analog_max_val;
// num of averages
uint8_t analog_num_average;
// reference can be internal or external
ADC_REF_SOURCE analog_reference_internal;
#ifdef ADC_USE_PGA
// value of the pga
uint8_t pga_value;
#endif
// conversion speed
ADC_CONVERSION_SPEED conversion_speed;
// sampling speed
ADC_SAMPLING_SPEED sampling_speed;
// translate pin number to SC1A nomenclature
const uint8_t *const channel2sc1a;
// are interrupts on?
bool interrupts_enabled;
// same for differential pins
#if ADC_DIFF_PAIRS > 0
const ADC_NLIST *const diff_table;
//! Get the SC1A value of the differential pair for this pin
uint8_t getDifferentialPair(uint8_t pin)
{
for (uint8_t i = 0; i < ADC_DIFF_PAIRS; i++)
{
if (diff_table[i].pin == pin)
{
return diff_table[i].sc1a;
}
}
return ADC_SC1A_PIN_INVALID;
}
#endif
//! Initialize ADC
void analog_init();
//! Switch on clock to ADC
void startClock()
{
#if defined(ADC_TEENSY_4)
if (ADC_num == 0)
{
CCM_CCGR1 |= CCM_CCGR1_ADC1(CCM_CCGR_ON);
}
else
{
CCM_CCGR1 |= CCM_CCGR1_ADC2(CCM_CCGR_ON);
}
#else
if (ADC_num == 0)
{
SIM_SCGC6 |= SIM_SCGC6_ADC0;
}
else
{
SIM_SCGC3 |= SIM_SCGC3_ADC1;
}
#endif
}
// registers point to the correct ADC module
typedef volatile uint32_t ®
// registers that control the adc module
ADC_REGS_t &adc_regs;
#ifdef ADC_USE_PDB
reg PDB0_CHnC1; // PDB channel 0 or 1
#endif
#ifdef ADC_TEENSY_4
uint8_t XBAR_IN;
uint8_t XBAR_OUT;
uint8_t QTIMER4_INDEX;
uint8_t ADC_ETC_TRIGGER_INDEX;
#endif
const IRQ_NUMBER_t IRQ_ADC; // IRQ number
protected:
};
#endif // ADC_MODULE_H