Skip to content

Latest commit

 

History

History
95 lines (82 loc) · 4.39 KB

README.md

File metadata and controls

95 lines (82 loc) · 4.39 KB

Meta Learning with Hessian Free Approach in Neural Nets Training

This is a Tensorflow implementation of MLHF optimizer (paper link https://arxiv.org/abs/1805.08462), a generic second-order meta-optimizer, which includes:

  • souce code of MLHF built on 2 layer LSTM.
  • meta-traning code on cuda-convnet and resnet of cifar10.
  • valuation code by traning cuda-convnet and resnet on cifar10 and ImageNet.

The training model code was modified from Tensorflow/model, while experience replay code was modified from evaldsurtans/dqn-prioritized-experience-replay. see git submodule for more detail.

Recommened Runtime Environment:

  • python 3.6
  • TensorFlow 1.7.0

One should be emphasized that although this work is based on Tensorflow, it does not mean that the current Tensorflow framework has the full capacity to impliment all technique detail of MLHF, e.g. the gradient of $H$'s inplimentation require the tf.gradents cancalculated in Defun while it's graph was not the default graph and not allowed in current Tensorflow. So, we hack some core code of tensorflow, which would not guarantee the compatibility in different tensorflow version any more. This part of hackfull and evil code can be view in CustomOp/gradients_impl.py.

meta-training and validation on CUDA-convnet or ResNet of cifar10

First, prepare dataset and environment:

git clone --recurse-submodules -j8 [email protected]:ozzzp/MLHF.git
cd MLHF

python models/official/resnet/cifar10_download_and_extract.py --data_dir=./cifar10_data

base_path=$(pwd)
addition_path=${base_path}'/RL_farmwork/dqn-prioritized-experience-replay'
export PYTHONPATH=${base_path}':'${addition_path}

To meta-train on CUDA-convnet, run:

python train_val/train_meta_optimizer.py \
        --data_dir=./cifar10_data \
        --batch_size=64 \
        --meta_roll_back=10 \
        --model_dir=./cuda_convnet_log \
        --keep_prob=0.3 \
        --data_format=channels_last \
        --meta_lr=1e-3 \
        --train_epochs=250 \
        --problem=convnet \
        --x_use=x --y_use=rnn --CG_iter=4

To meta-train on ResNet, run:

python  train_val/train_meta_optimizer.py \
        --data_dir=./cifar10_data \
        --batch_size=128 \
        --meta_roll_back=10 \
        --resnet_size=20 \
        --model_dir=./resnet_log \
        --keep_prob=0.5 \
        --data_format=channels_last \
        --meta_lr=1e-2 \
        --epochs_per_eval=250 \
        --problem=resnet \
        --x_use=x --y_use=rnn --CG_iter=4

To evaluate by training on cifar10, run:

 python -u train_val/use_meta_optimizer.py \
        --data_dir=./cifar10_data \
        --batch_size=128 \
        --model_dir=./eval_cuda_convnet\
        --data_format=channels_last \
        --problem=convnet \
        --optimizer=meta \
        --train_epochs=250 \
        --lr=1 \
        --meta_ckpt=./cuda_convnet_log \
        --x_use=x --y_use=rnn --CG_iter=4

To evaluate by training imagenet on resnet, first, preapre ImageNet dataset as here to ./ImageNet_2012, then, run:

 python --train_val/use_meta_resnet_on_imagenet.py \
        --data_dir=./ImageNet_2012 \
        --batch_size=64 \
        --resnet_size=18 \
        --model_dir=./eval_resnet \
        --data_format=channels_last \
        --problem=resnet \
        --optimizer=meta \
        --lr=1 \
        --meta_ckpt=./resnet_log \
        --x_use=x --y_use=rnn --CG_iter=4

Or, another choice is to modify and run scripts in ./scripts

extend to new model

The MLHF is a general optimizer, but we have impliment the minimal operators' difference forward and losses of experiment, this might be the main task that extend to new model. This part of code can be view in CustomOp/op_r_forward.py and CustomOp/hession_loss.py. Also, To register new operator's type to RNN, view CustomOp/rnn.py.

dicussion and feedback

Any discusstion, feedback or bugs report about MLHF are welcome. But it's not very recommend to contribute the application or extenstion of MLHF (e.g. extend to new dataset, new model, more ops) to this repository, consider it's still a experiment project and might not be merged in time. If you do such things or want to do, just fork this repository, and modify as your managed.