-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
82 lines (77 loc) · 2.24 KB
/
mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
_base_ = [
'../_base_/datasets/imagenet_bs512_mocov3.py',
'../_base_/default_runtime.py',
]
# model settings
temperature = 1.0
model = dict(
type='MoCoV3',
base_momentum=0.01, # 0.01 for 100e and 300e, 0.004 for 1000e
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='SyncBN'),
zero_init_residual=False),
neck=dict(
type='NonLinearNeck',
in_channels=2048,
hid_channels=4096,
out_channels=256,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=True),
head=dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=256,
hid_channels=4096,
out_channels=256,
num_layers=2,
with_bias=False,
with_last_bn=False,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
loss=dict(type='CrossEntropyLoss', loss_weight=2 * temperature),
temperature=temperature))
# optimizer
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(type='LARS', lr=9.6, weight_decay=1e-6, momentum=0.9),
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),
}),
)
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=90,
by_epoch=True,
begin=10,
end=100,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100)
# only keeps the latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)