-
Notifications
You must be signed in to change notification settings - Fork 2
/
pi.c
231 lines (204 loc) · 6.53 KB
/
pi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/**
* @file pi.c
* @brief Implements a Proportional Integral clock servo.
* @note Copyright (C) 2011 Richard Cochran <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include "config.h"
#include "pi.h"
#include "print.h"
#include "servo_private.h"
#define HWTS_KP_SCALE 0.7
#define HWTS_KI_SCALE 0.3
#define SWTS_KP_SCALE 0.1
#define SWTS_KI_SCALE 0.001
#define MAX_KP_NORM_MAX 1.0
#define MAX_KI_NORM_MAX 2.0
#define FREQ_EST_MARGIN 0.001
struct pi_servo {
struct servo servo;
int64_t offset[2];
uint64_t local[2];
double drift;
double kp;
double ki;
double last_freq;
int count;
/* configuration: */
double configured_pi_kp;
double configured_pi_ki;
double configured_pi_kp_scale;
double configured_pi_kp_exponent;
double configured_pi_kp_norm_max;
double configured_pi_ki_scale;
double configured_pi_ki_exponent;
double configured_pi_ki_norm_max;
};
static void pi_destroy(struct servo *servo)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
free(s);
}
static double pi_sample(struct servo *servo,
int64_t offset,
uint64_t local_ts,
double weight,
enum servo_state *state)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
double ki_term, ppb = s->last_freq;
double freq_est_interval, localdiff;
switch (s->count) {
case 0:
s->offset[0] = offset;
s->local[0] = local_ts;
*state = SERVO_UNLOCKED;
s->count = 1;
break;
case 1:
s->offset[1] = offset;
s->local[1] = local_ts;
/* Make sure the first sample is older than the second. */
if (s->local[0] >= s->local[1]) {
*state = SERVO_UNLOCKED;
s->count = 0;
break;
}
/* Wait long enough before estimating the frequency offset. */
localdiff = (s->local[1] - s->local[0]) / 1e9;
localdiff += localdiff * FREQ_EST_MARGIN;
freq_est_interval = 0.016 / s->ki;
if (freq_est_interval > 1000.0) {
freq_est_interval = 1000.0;
}
if (localdiff < freq_est_interval) {
*state = SERVO_UNLOCKED;
break;
}
/* Adjust drift by the measured frequency offset. */
s->drift += (1e9 - s->drift) * (s->offset[1] - s->offset[0]) /
(s->local[1] - s->local[0]);
if (s->drift < -servo->max_frequency)
s->drift = -servo->max_frequency;
else if (s->drift > servo->max_frequency)
s->drift = servo->max_frequency;
if ((servo->first_update &&
servo->first_step_threshold &&
servo->first_step_threshold < llabs(offset)) ||
(servo->step_threshold &&
servo->step_threshold < llabs(offset)))
*state = SERVO_JUMP;
else
*state = SERVO_LOCKED;
ppb = s->drift;
s->count = 2;
break;
case 2:
/*
* reset the clock servo when offset is greater than the max
* offset value. Note that the clock jump will be performed in
* step 1, so it is not necessary to have clock jump
* immediately. This allows re-calculating drift as in initial
* clock startup.
*/
if (servo->step_threshold &&
servo->step_threshold < llabs(offset)) {
*state = SERVO_UNLOCKED;
s->count = 0;
break;
}
ki_term = s->ki * offset * weight;
ppb = s->kp * offset * weight + s->drift + ki_term;
if (ppb < -servo->max_frequency) {
ppb = -servo->max_frequency;
} else if (ppb > servo->max_frequency) {
ppb = servo->max_frequency;
} else {
s->drift += ki_term;
}
*state = SERVO_LOCKED;
break;
}
s->last_freq = ppb;
return ppb;
}
static void pi_sync_interval(struct servo *servo, double interval)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
s->kp = s->configured_pi_kp_scale * pow(interval, s->configured_pi_kp_exponent);
if (s->kp > s->configured_pi_kp_norm_max / interval)
s->kp = s->configured_pi_kp_norm_max / interval;
s->ki = s->configured_pi_ki_scale * pow(interval, s->configured_pi_ki_exponent);
if (s->ki > s->configured_pi_ki_norm_max / interval)
s->ki = s->configured_pi_ki_norm_max / interval;
pr_debug("PI servo: sync interval %.3f kp %.3f ki %.6f",
interval, s->kp, s->ki);
}
static void pi_reset(struct servo *servo)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
s->count = 0;
}
struct servo *pi_servo_create(struct config *cfg, double fadj, int sw_ts)
{
struct pi_servo *s;
s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->servo.destroy = pi_destroy;
s->servo.sample = pi_sample;
s->servo.sync_interval = pi_sync_interval;
s->servo.reset = pi_reset;
s->drift = fadj;
s->last_freq = fadj;
s->kp = 0.0;
s->ki = 0.0;
s->configured_pi_kp = config_get_double(cfg, NULL, "pi_proportional_const");
s->configured_pi_ki = config_get_double(cfg, NULL, "pi_integral_const");
s->configured_pi_kp_scale = config_get_double(cfg, NULL, "pi_proportional_scale");
s->configured_pi_kp_exponent =
config_get_double(cfg, NULL, "pi_proportional_exponent");
s->configured_pi_kp_norm_max =
config_get_double(cfg, NULL, "pi_proportional_norm_max");
s->configured_pi_ki_scale =
config_get_double(cfg, NULL, "pi_integral_scale");
s->configured_pi_ki_exponent =
config_get_double(cfg, NULL, "pi_integral_exponent");
s->configured_pi_ki_norm_max =
config_get_double(cfg, NULL, "pi_integral_norm_max");
if (s->configured_pi_kp && s->configured_pi_ki) {
/* Use the constants as configured by the user without
adjusting for sync interval unless they make the servo
unstable. */
s->configured_pi_kp_scale = s->configured_pi_kp;
s->configured_pi_ki_scale = s->configured_pi_ki;
s->configured_pi_kp_exponent = 0.0;
s->configured_pi_ki_exponent = 0.0;
s->configured_pi_kp_norm_max = MAX_KP_NORM_MAX;
s->configured_pi_ki_norm_max = MAX_KI_NORM_MAX;
} else if (!s->configured_pi_kp_scale || !s->configured_pi_ki_scale) {
if (sw_ts) {
s->configured_pi_kp_scale = SWTS_KP_SCALE;
s->configured_pi_ki_scale = SWTS_KI_SCALE;
} else {
s->configured_pi_kp_scale = HWTS_KP_SCALE;
s->configured_pi_ki_scale = HWTS_KI_SCALE;
}
}
return &s->servo;
}