diff --git a/live-0011/tfjs-linear-regressor.html b/live-0011/tfjs-linear-regressor.html
index bf34960..df35cb6 100644
--- a/live-0011/tfjs-linear-regressor.html
+++ b/live-0011/tfjs-linear-regressor.html
@@ -19,35 +19,13 @@
🧠Training a Linear Regressor in TF.js
const name = "Nono";
console.log(`JavaScript & ${name} script says hello! 👋`);
- // Define our TensorFlow model
- const model = tf.sequential({
- layers: [
- tf.layers.dense({units: 1, inputShape: [1]})
- ]
- });
-
+ // Define your TensorFlow.s model
+ const model = tf.sequential({ layers: [ tf.layers.dense({units: 1, inputShape: [1]}) ] });
+ // Compile it
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
-
- const onEpochEnd = (epoch, logs) => {
- console.log(`Epoch ${epoch} Loss: ${logs.loss}`);
- model.predict(tf.tensor2d([5], [1, 1])).print();
- }
-
- const xs = tf.tensor2d([1, 2, 3, 4, 12, -10], [6, 1]);
- const ys = tf.tensor2d([1, 3, 5, 7, 23, -21], [6, 1]);
-
- // Train the model using the data.
- console.log(`Training the model..`);
-
- const config = {
- callbacks: {onEpochEnd},
- epochs: 300
- };
-
- model.fit(xs, ys, config).then(() => {
- model.predict(tf.tensor2d([5], [1, 1])).print();
- console.log(`Epoch`);
- });
+ // And train!
+ model.fit(xs, ys, config);
+
console.log(`Done!`);
// Sample function to predict on the console