-
Notifications
You must be signed in to change notification settings - Fork 0
/
disk_asgd.py
435 lines (402 loc) · 18.7 KB
/
disk_asgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import math
import numpy
import matplotlib.pyplot as plt
from scipy import integrate
from scipy.interpolate import interp1d
from scipy.interpolate import RectBivariateSpline
from scipy.special import gamma
import warnings
import pyfits
class Disk:
stefbolt_const = 5.67e-8
h_const = 6.6260695729e-34
k_const = 1.380648813e-23
c_const = 2.99792458e8
"""
inner and outer radius in units of AU
grain size in units of microns
disk mass in units of earth masses
"""
def __init__(self, innerRadius, outerRadius, grainSize, diskMass, powerLaw, grainEfficiency, beltMass):
# set the grain density to 2.7 grams/cm^3 in kilograms/m^3
self.grainDensity = 2.7e3
# set the star temperature to solar temperature in Kelvin
self.starTemperature = 5500.0
# set the star radius to solar radius in meters
self.starRadius = 6.955e8*.84
# set the star luminosity to solar luminosity in Watts
self.starLuminosity = 3.839e26*.583
# set the star distance to 35 parsecs in meters
self.starDistance = 35*3.08568e16
# disable overflow warnings
warnings.filterwarnings("ignore", "overflow encountered in double_scalars")
# convert the radii to meters
self.innerRadius = float(innerRadius)*1.496e11
self.outerRadius = float(outerRadius)*1.496e11
# convert grain size to meters
self.grainSize = float(grainSize)/1e6
self.grainSize_max = 0.01 #Max grain size is set to 1 cm
self.grainpowerLaw = -2.5 #Since dN/da = -3.5
# convert to kilograms
self.diskMass = float(diskMass)*5.9742e24
self.powerLaw = float(powerLaw)
self.grainEfficiency = float(grainEfficiency) #TODO: We can just get rid of this, right?
self.beltMass = float(beltMass)*5.9742e24
# calculate zeta(grainEfficency + 4)
argument = self.grainEfficiency + 4
self.zeta = 0
for n in range(1, 100):
self.zeta += 1.0/(n**argument)
# calculate the surface density at 100 AU (sigma_100)
j = 2 - self.powerLaw
m = (self.outerRadius**j) - (self.innerRadius**j)
self.surfaceSigma = self.diskMass*j/(2*math.pi*((100*1.496e11)**self.powerLaw)*m)
'''
Read in model spectrum, IRS spectrum, and Kurucz-Lejeune atmosphere.
'''
print 'Reading in spectral data...'
# read and store data from the SED model
f = open('Model Spectrum.txt','r')
radius = 0.84*6.955*1e8
dist = 35*3.09e16
self.data_lambda = []
self.data_flux = []
line = f.readline()
while line != '':
# convert nanometers to meters
lamma = float(line[4:12])*1e-9
flux = float(line[29:38])*4*3.14159*(radius/dist)**2*1e23
# multiply by nu
flux *= self.c_const/lamma
self.data_lambda.append(lamma)
self.data_flux.append(flux)
line = f.readline()
f.close()
self.data_lambda.append(1e4*1e-6)
self.data_flux.append(2.914e-13*4*3.14159*(radius/dist)**2*1e23*self.c_const/1e-2)
self.data_lambda = self.convertToMicrons(self.data_lambda)
# read and store observed fluxes
f = open('Observed Fluxes.txt', 'r')
self.sample_lambda = []
self.sample_flux = []
self.sample_error = []
line = f.readline()
while line != '':
# read wavelength, flux, and error
info = line.split()
# convert microns to meters, but use microns
lam = float(info[0])*1e-6
self.sample_lambda.append(float(info[0]))
# make flux in Janksys into Jansky*Hz by muliplying with nu
flu = float(info[1])*self.c_const/lam
self.sample_flux.append(flu)
# do the same thing with error
err = float(info[2])*self.c_const/lam
self.sample_error.append(err)
line = f.readline()
f.close()
#read and store IRAS fluxes, which will only be used for display purposes, not fitting
f = open('IRS Spectrum.txt', 'r')
self.IRS_lambda = []
self.IRS_flux = []
self.IRS_error = []
line = f.readline()
while line != '':
info = line.split()
lam = float(info[0])
self.IRS_lambda.append(lam)
flu = float(info[1])*self.c_const/(lam*1e-6) #Want nu*F_nu
self.IRS_flux.append(flu)
err = float(info[2])/flu*self.c_const/(lam*1e-6)*100
self.IRS_error.append(err)
line = f.readline()
self.ast_avg_err = numpy.mean(self.IRS_error)
#print "Average % error in IRS Spectrum =",self.ast_avg_err,"%" #Turns out it's 5.89%
f.close()
'''
Read in Q*B table and associated arrays. Q = Q[a][\lambda]
'''
print 'Reading in compiled arrays...'
compiled_temp = [float(x) for x in pyfits.open('./dust/compiled_temperature.fits')[0].data]
compiled_grain_sizes = [float(x) for x in pyfits.open('./dust/compiled_grain_sizes.fits')[0].data]
compiled_integrals = pyfits.open('./dust/compiled_integrals.fits')[0].data
compiled_q = pyfits.open('./dust/compiled_Q.fits')[0].data
#Need to sort, since they were generated in a weird order...
self.sorted_q = numpy.array([y for (x,y) in sorted(zip(compiled_grain_sizes,compiled_q))])
self.sorted_lambda = numpy.array([float(x) for x in pyfits.open('./dust/compiled_lambda.fits')[0].data])
self.sorted_integrals = numpy.array([y for (x,y) in sorted(zip(compiled_grain_sizes,compiled_integrals))])
self.sorted_grain_sizes = numpy.array(sorted(compiled_grain_sizes))
self.sorted_temp = numpy.array(compiled_temp)
print 'Calculating Q(a,lambda)...'
self.q_interp = RectBivariateSpline(self.sorted_grain_sizes, self.sorted_lambda, self.sorted_q)
'''
Generate Temperature[radius][grain size] array and the resulting interpolation function.
'''
print 'Calculating T(r,a)...'
self.rad_steps = numpy.arange(self.innerRadius,self.outerRadius,1.496e10) #Steps of 0.1 AU
size_mag_steps = numpy.arange(math.log10(self.grainSize),math.log10(self.grainSize_max),0.3) #Steps of 0.3 in log space
self.grain_steps = [10**x for x in size_mag_steps]
self.T_list = []
for rad in self.rad_steps:
lhs = self.starLuminosity/(16*(math.pi**2)*(rad**2))
grain_temps = []
for size in self.grain_steps:
grain_close = min(self.sorted_grain_sizes, key=lambda y: math.fabs(y-size))
grain_index = numpy.where(self.sorted_grain_sizes==grain_close)[0][0]
integral_list = [self.sorted_integrals[grain_index][x] for x in range(len(self.sorted_temp))]
integral_close = min(integral_list, key=lambda y: math.fabs(y-lhs))
integral_index = numpy.where(integral_list==integral_close)[0][0]
temperature = self.sorted_temp[integral_index]
grain_temps.append(temperature)
self.T_list.append(grain_temps)
self.rad_array = numpy.array(self.rad_steps)
self.grain_array = numpy.array(self.grain_steps)
self.T_array = numpy.array(self.T_list)
self.temp_function = RectBivariateSpline(self.rad_array, self.grain_array, self.T_array)
# generate interpolation function that interpolates in log space
loglamb = map (math.log10, self.data_lambda)
logflux = map(math.log10, self.data_flux)
# if out of bounds, interpolates to 0
logFunct = interp1d(loglamb, logflux, bounds_error=False, fill_value=0)
self.interpol_funct = lambda x: 10**(logFunct(math.log10(x)))
#Add in an asteroid belt with a fixed temperature and mass
self.asteroid_radius = 1.0e-6 #arbitrary
self.M_aster = 4/3*math.pi*self.asteroid_radius**3*self.grainDensity
self.n_asteroids = self.beltMass/self.M_aster
self.Temp_a = 100.0
"""
changes the parameters to the disk
"""
#TODO: Need to regenerate the temp and q functions every time.
def changeParameters(self, innerRadius, outerRadius, grainSize, diskMass, powerLaw, grainEfficiency, beltMass):
# convert the radii to meters
self.innerRadius = float(innerRadius)*1.496e11
self.outerRadius = float(outerRadius)*1.496e11
# convert grain size to meters
self.grainSize = float(grainSize)/1e6
# convert to kilograms
self.diskMass = float(diskMass)*5.9742e24
self.powerLaw = float(powerLaw)
self.grainEfficiency = float(grainEfficiency)
self.beltMass = float(beltMass)*5.9742e24
self.n_asteroids = self.beltMass/self.M_aster
# calculate zeta(grainEfficency + 4)
argument = self.grainEfficiency + 4
self.zeta = 0
for n in range(1, 100):
self.zeta += 1.0/(n**argument)
# calculate the surface density at 100 AU (sigma_100)
j = 2 - self.powerLaw
m = (self.outerRadius**j) - (self.innerRadius**j)
self.surfaceSigma = self.diskMass*j/(2*math.pi*((100*1.496e11)**self.powerLaw)*m)
"""
gets the inner and outer radii in AU
"""
def getOuterRadius(self):
return self.outerRadius/1.496e11
def getInnerRadius(self):
return self.innerRadius/1.496e11
"""
gets the star distance in parsecs
"""
def getStarDistance(self):
return self.starDistance/3.08568e16
"""
converts a list of meters into microns
"""
def convertToMicrons(self, lst):
return [x*1e6 for x in lst]
"""
Takes a radius (in AU) and frequency (in GHz)
Returns the point flux at that radius and frequency in Jansky's
"""
def calculatePointFlux(self, radius, frequency):
radius = float(radius)*1.496e11
# make sure that we are inside of the ring
if radius > self.outerRadius or radius < self.innerRadius:
return 0
# convert frequency to GHz
lamma = self.c_const/(frequency*1e9)
fluxIntegral = integrate.quad(lambda size: (size**2)*self.qFunction(lamma,size)*\
self.calculateGrainSizeDistribution(radius, size)*self.calculateGrainBlackbody(radius, lamma, size),\
self.grainSize, self.grainSize_max)[0]
flux = 1e26/(self.starDistance**2)*fluxIntegral
return flux
"""
input lambda wavelength in meters
return nu*B_nu(lambda) in Jansky*Hz
"""
'''
def radIntegral(self, lamma, size):
return integrate.quad(lambda radius: radius*self.calculateGrainBlackbody(radius, lamma, size)*self.calculateGrainSizeDistribution(radius, size),\
self.innerRadius, self.outerRadius, limit=len(self.rad_steps))[0]
'''
def calculateFlux(self, lamma):
# integrate returns a list of integral value and error, we only want value
fluxIntegral = integrate.dblquad(lambda size, radius: radius*self.calculateGrainBlackbody(radius, lamma, size)*self.calculateGrainSizeDistribution(radius, size)
*(size**2)*self.qFunction(lamma, size), self.innerRadius, self.outerRadius, lambda y: self.grainSize, lambda y: self.grainSize_max, epsrel=0.1)
#TODO: That epsrel is probably not ideal, and this calculation is still very slow.
# scale by nu
nu = self.c_const/lamma
flux = nu*2*math.pi*1e26/(self.starDistance**2)*fluxIntegral[0]
print "Flux =", flux, "at lambda =", lamma
return flux
"""
Computes the surface number density of grains that are of size "size." Replaces calculateGrainDistribution.
"""
def calculateGrainSizeDistribution(self, radius, size):
surfaceMassDensity = self.surfaceSigma*((radius/(100*1.496e11))**(-self.powerLaw))
numerator = surfaceMassDensity*3*(self.grainpowerLaw + 4)*size**(self.grainpowerLaw)
denominator = 4*math.pi*self.grainDensity*(self.grainSize_max**(self.grainpowerLaw + 4) - self.grainSize**(self.grainpowerLaw + 4))
return numerator/denominator
"""
returns B_nu(T) in Janskys ( = 10^-26 * Watts / m^2 / Hz )
"""
def calculateGrainBlackbody(self, radius, lamma, size):
try:
nu = self.c_const/lamma
exponent = self.h_const*nu/(self.k_const*self.calculateGrainTemperature(radius, size))
numerator = 2*self.h_const*(nu**3)*math.pi
denominator = (self.c_const**2)*(math.e**exponent - 1)
grainBlackbody = numerator/denominator
except OverflowError:
return 0
return grainBlackbody
"""
Approximates the temperature of a grain using a precalculated table of integrals.
"""
def calculateGrainTemperature(self, radius, size):
return self.temp_function(radius, size)
#TODO: This is redundant.
"""
Returns the emissivity of a grain at a given wavelength from a lookup table.
"""
def qFunction(self, lamma, size):
return self.q_interp(size, lamma)
#TODO: This is also redundant.
"""
generates lambda and nu*B_nu values in meters and Janksy*Hz, respectively
"""
def generateModel(self):
self.generateAsteroids()
# sample from .1 microns to 10^4 microns
x = numpy.arange(-7, -2, 0.1)
x = [10**power for power in x]
y = [self.calculateFlux(lamma) for lamma in x]
self.disk_lambda = self.convertToMicrons(x)
self.model_lambda = self.convertToMicrons(x)
self.disk_flux = y
z = self.asteroid_flux
self.model_flux = map(lambda lamma,flux1,flux2: flux1+flux2+self.interpol_funct(lamma*1e6), x, y, z)
def calculateAsteroidBelt(self, lamma):
try:
nu = self.c_const/lamma
exponent = self.h_const*nu/(self.k_const*self.Temp_a)
numerator = 2*self.h_const*(nu**3)*math.pi*self.n_asteroids #Multiply by number of asteroids
denominator = (self.c_const**2)*(math.e**exponent - 1)
asteroidBlackbody = numerator/denominator*nu*1e26*self.asteroid_radius**2/self.starDistance**2
except OverflowError:
return 0
return asteroidBlackbody
def generateAsteroids(self):
x = numpy.arange(-7, -2, 0.1)
x = [10**power for power in x]
y = [self.calculateAsteroidBelt(lamma) for lamma in x]
self.asteroid_lambda = self.convertToMicrons(x)
self.asteroid_flux = y
#print 'Warm Belt Flux at 1.3mm = ', self.calculateAsteroidBelt(1.3e-3)*1.3e-3/self.c_const, 'Jy'
def generateInterpolation(self):
# generate interpolated data for the actual data we have
def calculateInterpol(lam):
# for less than 10^-6, ignore disk because so faint
if lam*1e-6 > 1e-6:
return self.calculateFlux(lam*1e-6)+self.interpol_funct(lam)+self.calculateAsteroidBelt(lam*1e-6)
else:
return self.interpol_funct(lam)
self.interpol_flux = map(calculateInterpol, self.sample_lambda)
"""
plots the SED of the star and disk
"""
def plotSED(self):
self.generateModel()
#self.generateInterpolation()
# plot the observed data
plt.errorbar(self.sample_lambda, self.Lsun(self.sample_flux), yerr=self.Lsun(self.sample_error), fmt='o', label = 'Observed Data', color='k')
plt.loglog(self.IRS_lambda, self.Lsun(self.IRS_flux), label = 'IRS Spectrum', linewidth=2, color='y')
# plot the disk model
plt.loglog(self.model_lambda, self.Lsun(self.model_flux), '-', label="Best Fit Model", linewidth=2, color='b')
plt.loglog(self.disk_lambda, self.Lsun(self.disk_flux), '--', label="Disk Model", linewidth=2, color='g')
#plt.loglog(self.sample_lambda, self.interpol_flux, "o", label = 'Interpolated Model Data')
plt.loglog(self.asteroid_lambda, self.Lsun(self.asteroid_flux), ':', label='Warm Dust Belt', linewidth=2, color='r')
plt.errorbar([1.3e-3*1e6], self.Lsun([7.1e-3*self.c_const/1.3e-3]), self.Lsun([1.5e-3*self.c_const/1.3e-3]), fmt='s', color='m') #This is our data point, with 20% systematic uncertainty added in quadrature.
# format and display the plot
plt.tick_params(labelsize=16)
plt.xlabel('$\lambda$ $(\mu m)$', fontsize=20)
plt.ylabel(r'$L_{\nu}$ $(L_{\odot})$', fontsize=20)
plt.legend()
plt.text(0.12, 0.60, 'HD 61005', fontsize=24)
plt.xlim(1e-1,3e3)
plt.ylim(1e-7,2e0)
#plt.savefig('SED_mcmcbelt0704.eps')
plt.show()
"""
computes the chi-squared value of the disk and model data
"""
def computeChiSquared(self):
self.generateInterpolation()
lamma = self.sample_lambda
model_flux = self.interpol_flux
actual_flux = self.sample_flux
error = self.sample_error
chi_squared = 0
numToFit = 0
for i in range(len(lamma)):
# the others are very close and we don't want them to mess up the chi-squared
if lamma[i] > 1e1 and lamma[i] < 1e3:
numToFit += 1
#print 'model:', model_flux[i]
#print 'actual:', actual_flux[i]
chi_squared += ((model_flux[i]-actual_flux[i])/error[i])**2
# degrees of freedom = [number of samples] - [number parameters to fit]
# TEMPO: parameters 6 normally
dof = numToFit - 5
chi_squared = chi_squared#/dof
return chi_squared
'''
Converts fluxes that are in nu*F_nu into Solar Luminosity units
'''
def Lsun(self, fluxes):
SolLum = [4*math.pi*self.starDistance**2*i/3.839e26/1e26 for i in fluxes]
return SolLum
'''
Use Beckwith's formula to get a realistic disk mass
'''
def diskMassestimate(self):
nu = 235.5e9
kappa_nu = 0.1*(nu/1e12)**self.grainEfficiency
Mass = 0.1*(0.02/kappa_nu) #Solar Masses
return Mass/3.00266478958e-06 #Conversion to Earth Masses
'''
Gets the approximate temperature of the disk using Wien's law.
'''
def disktemp(self):
x = numpy.arange(-7, -2, .01)
x = [10**power for power in x]
y = [self.calculateFlux(lamma) for lamma in x]
max = [0,0]
for i in range(0,len(y)):
if y[i] > max[1]:
max[0] = x[i]
max[1] = y[i]
lambda_peak = max[0]
T = 2.898e-3/lambda_peak
return T
'''
Need to debug? Look no further!
'''
def testplot(self):
x = numpy.arange(-10, 5, .001)
x = [10**power for power in x]
y = [self.calculateGrainBlackbody(70.,lamma) for lamma in x]
plt.loglog(x, y)
plt.show()