forked from Lydorn/Polygonization-by-Frame-Field-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_coco.py
712 lines (644 loc) · 31 KB
/
eval_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import os
import fnmatch
import shapely.geometry
from tqdm import tqdm
from multiprocess import Pool
import json
# COCO:
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
from pycocotools.cocoeval import Params
import datetime
import time
from collections import defaultdict
import copy
from functools import partial
import numpy as np
from lydorn_utils import python_utils, run_utils
from lydorn_utils import print_utils
from lydorn_utils import polygon_utils
def eval_coco(config):
assert len(config["fold"]) == 1, "There should be only one specified fold"
fold = config["fold"][0]
if fold != "test":
raise NotImplementedError
pool = Pool(processes=config["num_workers"])
# Find data dir
root_dir_candidates = [os.path.join(data_dirpath, config["dataset_params"]["root_dirname"]) for data_dirpath in
config["data_dir_candidates"]]
root_dir, paths_tried = python_utils.choose_first_existing_path(root_dir_candidates, return_tried_paths=True)
if root_dir is None:
print_utils.print_error(
"ERROR: Data root directory amongst \"{}\" not found!".format(paths_tried))
exit()
print_utils.print_info("Using data from {}".format(root_dir))
raw_dir = os.path.join(root_dir, "raw")
# Get run's eval results dir
results_dirpath = os.path.join(root_dir, config["eval_params"]["results_dirname"])
run_results_dirpath = run_utils.setup_run_dir(results_dirpath, config["eval_params"]["run_name"], check_exists=True)
# Setup coco
annType = 'segm'
# initialize COCO ground truth api
gt_annotation_filename = "annotation-small.json" if config["dataset_params"]["small"] else "annotation.json"
gt_annotation_filepath = os.path.join(raw_dir, "val",
gt_annotation_filename) # We are using the original val fold as our test fold
print_utils.print_info("INFO: Load gt from " + gt_annotation_filepath)
cocoGt = COCO(gt_annotation_filepath)
# image_id = 0
# annotation_ids = cocoGt.getAnnIds(imgIds=image_id)
# annotation_list = cocoGt.loadAnns(annotation_ids)
# print(annotation_list)
# initialize COCO detections api
annotation_filename_list = fnmatch.filter(os.listdir(run_results_dirpath), fold + ".annotation.*.json")
eval_one_partial = partial(eval_one, run_results_dirpath=run_results_dirpath, cocoGt=cocoGt, config=config, annType=annType, pool=pool)
# with Pool(8) as p:
# r = list(tqdm(p.imap(eval_one_partial, annotation_filename_list), total=len(annotation_filename_list)))
for annotation_filename in annotation_filename_list:
eval_one_partial(annotation_filename)
def eval_one(annotation_filename, run_results_dirpath, cocoGt, config, annType, pool=None):
print("---eval_one")
annotation_name = os.path.splitext(annotation_filename)[0]
if "samples" in config:
stats_filepath = os.path.join(run_results_dirpath,
"{}.stats.{}.{}.json".format("test", annotation_name, config["samples"]))
metrics_filepath = os.path.join(run_results_dirpath,
"{}.metrics.{}.{}.json".format("test", annotation_name, config["samples"]))
else:
stats_filepath = os.path.join(run_results_dirpath, "{}.stats.{}.json".format("test", annotation_name))
metrics_filepath = os.path.join(run_results_dirpath, "{}.metrics.{}.json".format("test", annotation_name))
res_filepath = os.path.join(run_results_dirpath, annotation_filename)
if not os.path.exists(res_filepath):
print_utils.print_warning("WARNING: result not found at filepath {}".format(res_filepath))
return
print_utils.print_info("Evaluate {} annotations:".format(annotation_filename))
try:
cocoDt = cocoGt.loadRes(res_filepath)
except AssertionError as e:
print_utils.print_error("ERROR: {}".format(e))
print_utils.print_info("INFO: continuing by removing unrecognised images")
res = json.load(open(res_filepath))
print("Initial res length:", len(res))
annsImgIds = [ann["image_id"] for ann in res]
image_id_rm = set(annsImgIds) - set(cocoGt.getImgIds())
print_utils.print_warning("Remove {} image ids!".format(len(image_id_rm)))
new_res = [ann for ann in res if ann["image_id"] not in image_id_rm]
print("New res length:", len(new_res))
cocoDt = cocoGt.loadRes(new_res)
# {4601886185638229705, 4602408603195004682, 4597274499619802317, 4600985465712755606, 4597238470822783353,
# 4597418614807878173}
# image_id = 0
# annotation_ids = cocoDt.getAnnIds(imgIds=image_id)
# annotation_list = cocoDt.loadAnns(annotation_ids)
# print(annotation_list)
if not os.path.exists(stats_filepath):
# Run COCOeval
cocoEval = COCOeval(cocoGt, cocoDt, annType)
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# Save stats
stats = {}
stat_names = ["AP", "AP_50", "AP_75", "AP_S", "AP_M", "AP_L", "AR", "AR_50", "AR_75", "AR_S", "AR_M", "AR_L"]
assert len(stat_names) == cocoEval.stats.shape[0]
for i, stat_name in enumerate(stat_names):
stats[stat_name] = cocoEval.stats[i]
python_utils.save_json(stats_filepath, stats)
else:
print("COCO stats already computed, skipping...")
if not os.path.exists(metrics_filepath):
# Verify that cocoDt has polygonal segmentation masks and not raster masks:
if isinstance(cocoDt.loadAnns(cocoDt.getAnnIds(imgIds=cocoDt.getImgIds()[0]))[0]["segmentation"], list):
metrics = {}
# Run additionnal metrics
print_utils.print_info("INFO: Running contour metrics")
contour_eval = ContourEval(cocoGt, cocoDt)
max_angle_diffs = contour_eval.evaluate(pool=pool)
metrics["max_angle_diffs"] = list(max_angle_diffs)
python_utils.save_json(metrics_filepath, metrics)
else:
print("Contour metrics already computed, skipping...")
def compute_contour_metrics(gts_dts):
gts, dts = gts_dts
gt_polygons = [shapely.geometry.Polygon(np.array(coords).reshape(-1, 2)) for ann in gts
for coords in ann["segmentation"]]
dt_polygons = [shapely.geometry.Polygon(np.array(coords).reshape(-1, 2)) for ann in dts
for coords in ann["segmentation"]]
fixed_gt_polygons = polygon_utils.fix_polygons(gt_polygons, buffer=0.0001) # Buffer adds vertices but is needed to repair some geometries
fixed_dt_polygons = polygon_utils.fix_polygons(dt_polygons)
# cosine_similarities, edge_distances = \
# polygon_utils.compute_polygon_contour_measures(dt_polygons, gt_polygons, sampling_spacing=2.0, min_precision=0.5,
# max_stretch=2)
max_angle_diffs = polygon_utils.compute_polygon_contour_measures(fixed_dt_polygons, fixed_gt_polygons, sampling_spacing=2.0, min_precision=0.5, max_stretch=2)
return max_angle_diffs
class ContourEval:
def __init__(self, coco_gt, coco_dt):
"""
@param coco_gt: coco object with ground truth annotations
@param coco_dt: coco object with detection results
"""
self.coco_gt = coco_gt # ground truth COCO API
self.coco_dt = coco_dt # detections COCO API
self.img_ids = sorted(coco_gt.getImgIds())
self.cat_ids = sorted(coco_dt.getCatIds())
def evaluate(self, pool=None):
gts = self.coco_gt.loadAnns(self.coco_gt.getAnnIds(imgIds=self.img_ids))
dts = self.coco_dt.loadAnns(self.coco_dt.getAnnIds(imgIds=self.img_ids))
_gts = defaultdict(list) # gt for evaluation
_dts = defaultdict(list) # dt for evaluation
for gt in gts:
_gts[gt['image_id'], gt['category_id']].append(gt)
for dt in dts:
_dts[dt['image_id'], dt['category_id']].append(dt)
evalImgs = defaultdict(list) # per-image per-category evaluation results
# Compute metric
args_list = []
# i = 1000
for img_id in self.img_ids:
for cat_id in self.cat_ids:
gts = _gts[img_id, cat_id]
dts = _dts[img_id, cat_id]
args_list.append((gts, dts))
# i -= 1
# if i <= 0:
# break
if pool is None:
measures_list = []
for args in tqdm(args_list, desc="Contour metrics"):
measures_list.append(compute_contour_metrics(args))
else:
measures_list = list(tqdm(pool.imap(compute_contour_metrics, args_list), desc="Contour metrics", total=len(args_list)))
measures_list = [measure for measures in measures_list for measure in measures] # Flatten list
# half_tangent_cosine_similarities_list, edge_distances_list = zip(*measures_list)
# half_tangent_cosine_similarities_list = [item for item in half_tangent_cosine_similarities_list if item is not None]
measures_list = [value for value in measures_list if value is not None]
max_angle_diffs = np.array(measures_list)
max_angle_diffs = max_angle_diffs * 180 / np.pi # Convert to degrees
return max_angle_diffs
class COCOeval:
# Interface for evaluating detection on the Microsoft COCO dataset.
#
# The usage for CocoEval is as follows:
# cocoGt=..., cocoDt=... # load dataset and results
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
# E.params.recThrs = ...; # set parameters as desired
# E.evaluate(); # run per image evaluation
# E.accumulate(); # accumulate per image results
# E.summarize(); # display summary metrics of results
# For example usage see evalDemo.m and http://mscoco.org/.
#
# The evaluation parameters are as follows (defaults in brackets):
# imgIds - [all] N img ids to use for evaluation
# catIds - [all] K cat ids to use for evaluation
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
# areaRng - [...] A=4 object area ranges for evaluation
# maxDets - [1 10 100] M=3 thresholds on max detections per image
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
# iouType replaced the now DEPRECATED useSegm parameter.
# useCats - [1] if true use category labels for evaluation
# Note: if useCats=0 category labels are ignored as in proposal scoring.
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
#
# evaluate(): evaluates detections on every image and every category and
# concats the results into the "evalImgs" with fields:
# dtIds - [1xD] id for each of the D detections (dt)
# gtIds - [1xG] id for each of the G ground truths (gt)
# dtMatches - [TxD] matching gt id at each IoU or 0
# gtMatches - [TxG] matching dt id at each IoU or 0
# dtScores - [1xD] confidence of each dt
# gtIgnore - [1xG] ignore flag for each gt
# dtIgnore - [TxD] ignore flag for each dt at each IoU
#
# accumulate(): accumulates the per-image, per-category evaluation
# results in "evalImgs" into the dictionary "eval" with fields:
# params - parameters used for evaluation
# date - date evaluation was performed
# counts - [T,R,K,A,M] parameter dimensions (see above)
# precision - [TxRxKxAxM] precision for every evaluation setting
# recall - [TxKxAxM] max recall for every evaluation setting
# Note: precision and recall==-1 for settings with no gt objects.
#
# See also coco, mask, pycocoDemo, pycocoEvalDemo
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
'''
Initialize CocoEval using coco APIs for gt and dt
:param cocoGt: coco object with ground truth annotations
:param cocoDt: coco object with detection results
:return: None
'''
if not iouType:
print('iouType not specified. use default iouType segm')
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
self.params = {} # evaluation parameters
self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iouType=iouType) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if cocoGt is not None:
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
def _prepare(self):
'''
Prepare ._gts and ._dts for evaluation based on params
:return: None
'''
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
rle = coco.annToRLE(ann)
ann['rle'] = rle
p = self.params
if p.useCats:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# convert ground truth to mask if iouType == 'segm'
if p.iouType == 'segm':
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
if p.iouType == 'keypoints':
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt['image_id'], gt['category_id']].append(gt)
for dt in dts:
self._dts[dt['image_id'], dt['category_id']].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
'''
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
'''
tic = time.time()
print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox':
computeIoU = self.computeIoU
elif p.iouType == 'keypoints':
computeIoU = self.computeOks
self.ious = {(imgId, catId): computeIoU(imgId, catId) \
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print('DONE (t={:0.2f}s).'.format(toc - tic))
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0:p.maxDets[-1]]
if p.iouType == 'segm':
g = [g['rle'] for g in gt]
d = [d['rle'] for d in dt]
elif p.iouType == 'bbox':
g = [g['bbox'] for g in gt]
d = [d['bbox'] for d in dt]
else:
raise Exception('unknown iouType for iou computation')
# compute iou between each dt and gt region
iscrowd = [int(o['iscrowd']) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
return ious
def computeOks(self, imgId, catId):
p = self.params
# dimention here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = np.array(
[.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
vars = (sigmas * 2) ** 2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
xg = g[0::3];
yg = g[1::3];
vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt['bbox']
x0 = bb[0] - bb[2];
x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3];
y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt['keypoints'])
xd = d[0::3];
yd = d[1::3]
if k1 > 0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)
e = (dx ** 2 + dy ** 2) / vars / (gt['area'] + np.spacing(1)) / 2
if k1 > 0:
e = e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
def evaluateImg(self, imgId, catId, aRng, maxDet):
'''
perform evaluation for single category and image
:return: dict (single image results)
'''
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return None
for g in gt:
if g['ignore'] or (g['area'] < aRng[0] or g['area'] > aRng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T, G))
dtm = np.zeros((T, D))
gtIg = np.array([g['_ignore'] for g in gt])
dtIg = np.zeros((T, D))
if len(ious):
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dtIg[tind, dind] = gtIg[m]
dtm[tind, dind] = gt[m]['id']
gtm[tind, m] = d['id']
# set unmatched detections outside of area range to ignore
a = np.array([d['area'] < aRng[0] or d['area'] > aRng[1] for d in dt]).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0)))
# store results for given image and category
return {
'image_id': imgId,
'category_id': catId,
'aRng': aRng,
'maxDet': maxDet,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gtIg,
'dtIgnore': dtIg,
}
def accumulate(self, p=None):
'''
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
'''
print('Accumulating evaluation results...')
tic = time.time()
if not self.evalImgs:
print('Please run evaluate() first')
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs)
R = len(p.recThrs)
K = len(p.catIds) if p.useCats else 1
A = len(p.areaRng)
M = len(p.maxDets)
precision = -np.ones((T, R, K, A, M)) # -1 for the precision of absent categories
recall = -np.ones((T, K, A, M))
scores = -np.ones((T, R, K, A, M))
# create dictionary for future indexing
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds)
A0 = len(_pe.areaRng)
# retrieve E at each category, area range, and max number of detections
for k, k0 in enumerate(k_list):
Nk = k0 * A0 * I0
for a, a0 in enumerate(a_list):
Na = a0 * I0
for m, maxDet in enumerate(m_list):
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if not e is None]
if len(E) == 0:
continue
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
inds = np.argsort(-dtScores, kind='mergesort')
dtScoresSorted = dtScores[inds]
dtm = np.concatenate([e['dtMatches'][:, 0:maxDet] for e in E], axis=1)[:, inds]
dtIg = np.concatenate([e['dtIgnore'][:, 0:maxDet] for e in E], axis=1)[:, inds]
gtIg = np.concatenate([e['gtIgnore'] for e in E])
npig = np.count_nonzero(gtIg == 0)
if npig == 0:
continue
tps = np.logical_and(dtm, np.logical_not(dtIg))
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
nd = len(tp)
rc = tp / npig
pr = tp / (fp + tp + np.spacing(1))
q = np.zeros((R,))
ss = np.zeros((R,))
if nd:
recall[t, k, a, m] = rc[-1]
else:
recall[t, k, a, m] = 0
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist()
q = q.tolist()
for i in range(nd - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
inds = np.searchsorted(rc, p.recThrs, side='left')
try:
for ri, pi in enumerate(inds):
q[ri] = pr[pi]
ss[ri] = dtScoresSorted[pi]
except:
pass
precision[t, :, k, a, m] = np.array(q)
scores[t, :, k, a, m] = np.array(ss)
self.eval = {
'params': p,
'counts': [T, R, K, A, M],
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'precision': precision,
'recall': recall,
'scores': scores,
}
toc = time.time()
print('DONE (t={:0.2f}s).'.format(toc - tic))
def summarize(self):
'''
Compute and display summary metrics for evaluation results.
Note this function can *only* be applied on the default parameter setting
'''
def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1)
stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
stats[6] = _summarize(0)
stats[7] = _summarize(0, iouThr=0.5, maxDets=self.params.maxDets[2])
stats[8] = _summarize(0, iouThr=0.75, maxDets=self.params.maxDets[2])
stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
return stats
def _summarizeKps():
stats = np.zeros((10,))
stats[0] = _summarize(1, maxDets=20)
stats[1] = _summarize(1, maxDets=20, iouThr=.5)
stats[2] = _summarize(1, maxDets=20, iouThr=.75)
stats[3] = _summarize(1, maxDets=20, areaRng='medium')
stats[4] = _summarize(1, maxDets=20, areaRng='large')
stats[5] = _summarize(0, maxDets=20)
stats[6] = _summarize(0, maxDets=20, iouThr=.5)
stats[7] = _summarize(0, maxDets=20, iouThr=.75)
stats[8] = _summarize(0, maxDets=20, areaRng='medium')
stats[9] = _summarize(0, maxDets=20, areaRng='large')
return stats
if not self.eval:
raise Exception('Please run accumulate() first')
iouType = self.params.iouType
if iouType == 'segm' or iouType == 'bbox':
summarize = _summarizeDets
elif iouType == 'keypoints':
summarize = _summarizeKps
self.stats = summarize()
def __str__(self):
self.summarize()