Skip to content

Latest commit

 

History

History
32 lines (22 loc) · 1.29 KB

File metadata and controls

32 lines (22 loc) · 1.29 KB

Summary

Summary task in Vietnamese applies seq2seq model. Thanks to the SOTA Roberta model in Vietnamese, PhoBERT, I made summarization architecture which is trained on Vietnews dataset (reference 1)

Demo

  1. Step 1: Build docker container
docker build -f Dockerfile -t nlp-text-summarization:latest .
  1. Step 2: Run docker container
docker run -p 8501:8501 nlp-text-summarization:latest

Results

The model outperforms the recent research paper on Vietnamese text summarization on the same dataset.

Attempt Precision Recall F1-Score F1-Score Fast-Abs (Ref 1)
Rouge 1 0.64 0.61 0.61 0.55
Rouge 2 0.31 0.30 0.30 0.23
Rouge L 0.42 0.41 0.40 0.38

Reference

  1. Nguyen, Van-Hau & Nguyen, Thanh-Chinh & Nguyen, Minh-Tien & Hoai, Nguyen. (2019). VNDS: A Vietnamese Dataset for Summarization. 375-380. 10.1109/NICS48868.2019.9023886.
  2. Rothe, Sascha & Narayan, Shashi & Severyn, Aliaksei. (2020). Leveraging Pre-trained Checkpoints for Sequence Generation Tasks. Transactions of the Association for Computational Linguistics. 8. 264-280. 10.1162/tacl_a_00313.
  3. Nguyen, Dat Quoc & Nguyen, Anh. (2020). PhoBERT: Pre-trained language models for Vietnamese. 1037-1042. 10.18653/v1/2020.findings-emnlp.92.