-
Notifications
You must be signed in to change notification settings - Fork 1
/
.env.example
58 lines (41 loc) · 1.76 KB
/
.env.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Flask env. Use 'production' or 'development'. https://flask.palletsprojects.com/en/1.1.x/config/#ENV
FLASK_ENV=development
# Disable in production! https://flask.palletsprojects.com/en/1.1.x/config/#DEBUG
FLASK_DEBUG=1
# Change for production. https://flask.palletsprojects.com/en/1.1.x/config/#SECRET_KEY
FLASK_SECRET_KEY=newsgacdev123
# The (internal to container) port on which flask should run. No change needed.
FLASK_PORT=5050
# FLask starting point. No change needed.
FLASK_APP=newsgac.app
# Where can python find the mongo database? Change to `localhost` when running from a local environment.
MONGO_HOST=database
MONGO_PORT=27017
# Directory where Mongo will save its data (it will be mounted into the mongo container).
DATA_DIRECTORY=./data
# Where is the Frog server running? Use `localhost` when running locally.
FROG_HOSTNAME=frog
FROG_PORT=12345
# Redis. Use `localhost` when running locally.
REDIS_HOST=redis
REDIS_PORT=6379
# Set to `True` to execute task synchronously immediately (won't be send to workers). Good for development/debugging.
CELERY_EAGER=False
# How many CPUs can the Frog container use?
FROG_CPU_LIMIT=1
# How many CPUs can the default celery worker container use?
CELERY_CPU_LIMIT=1
# Some machine learners can be parallellized. How many parallel jobs can each one use?
N_PARALLEL_JOBS=1
# Number of simultaneous jobs when cross validating. Note that since internally
# machine learners might parallellize again, so that the amount of jobs could potentially be
# N_PARALLEL_JOBS * N_CROSS_VAL_JOBS (* amount of celery workers..)
N_CROSS_VAL_JOBS=1
# Timezone
TZ=Europe/Amsterdam
# Where to save the jupyter notebooks
JUPYTER_NOTEBOOK_DIRECTORY=./notebooks
# Jupyterlab username
JUPYTER_USER=jupyter
# Jupyterlab password
JUPYTER_PASSWORD=jupyter