有 n
个城市,其中一些彼此相连,另一些没有相连。如果城市 a
与城市 b
直接相连,且城市 b
与城市 c
直接相连,那么城市 a
与城市 c
间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n
的矩阵 isConnected
,其中 isConnected[i][j] = 1
表示第 i
个城市和第 j
个城市直接相连,而 isConnected[i][j] = 0
表示二者不直接相连。
返回矩阵中 省份 的数量。
示例 1:
输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]] 输出:2
示例 2:
输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]] 输出:3
提示:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j]
为1
或0
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
方法一:深度优先搜索
判断城市之间是否属于同一个连通分量,最后连通分量的总数即为结果。
方法二:并查集
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
深度优先搜索:
class Solution:
def findCircleNum(self, isConnected: List[List[int]]) -> int:
def dfs(i):
for j in range(n):
if not visited[j] and isConnected[i][j] == 1:
visited[j] = True
dfs(j)
n = len(isConnected)
visited = [False] * n
num = 0
for i in range(n):
if not visited[i]:
dfs(i)
num += 1
return num
并查集:
class Solution:
def findCircleNum(self, isConnected: List[List[int]]) -> int:
n = size = len(isConnected)
p = list(range(n))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
for i in range(n):
for j in range(i + 1, n):
if isConnected[i][j] == 1 and find(i) != find(j):
p[find(i)] = find(j)
size -= 1
return size
深度优先搜索:
class Solution {
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
boolean[] visited = new boolean[n];
int num = 0;
for (int i = 0; i < n; ++i) {
if (!visited[i]) {
dfs(isConnected, visited, i, n);
++num;
}
}
return num;
}
private void dfs(int[][] isConnected, boolean[] visited, int i, int n) {
for (int j = 0; j < n; ++j) {
if (!visited[j] && isConnected[i][j] == 1) {
visited[j] = true;
dfs(isConnected, visited, j, n);
}
}
}
}
并查集:
class Solution {
private int[] p;
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
int size = n;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (isConnected[i][j] == 1 && find(i) != find(j)) {
p[find(i)] = find(j);
--size;
}
}
}
return size;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
int findCircleNum(vector<vector<int>>& isConnected) {
int n = isConnected.size();
p.resize(n);
for (int i = 0; i < n; ++i) p[i] = i;
int size = n;
for (int i = 0; i < n; ++i)
{
for (int j = i + 1; j < n; ++j)
{
if (isConnected[i][j] && find(i) != find(j))
{
p[find(i)] = find(j);
--size;
}
}
}
return size;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func findCircleNum(isConnected [][]int) int {
n := len(isConnected)
p = make([]int, n)
for i := 0; i < n; i++ {
p[i] = i
}
size := n
for i := 0; i < n; i++ {
for j := i + 1; j < n; j++ {
if isConnected[i][j] == 1 && find(i) != find(j) {
p[find(i)] = find(j)
size--
}
}
}
return size
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}