给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5] 输出:9
提示:
n == height.length
0 <= n <= 3 * 104
0 <= height[i] <= 105
动态规划法。
对于下标 i,水能达到的最大高度等于下标 i 左右两侧的最大高度的最小值,再减去 height[i]
就能得到当前柱子所能存的水量。
class Solution:
def trap(self, height: List[int]) -> int:
n = len(height)
if n < 3:
return 0
lmx, rmx = [height[0]] * n, [height[n - 1]] * n
for i in range(1, n):
lmx[i] = max(lmx[i - 1], height[i])
rmx[n - 1 - i] = max(rmx[n - i], height[n - 1 - i])
res = 0
for i in range(n):
res += min(lmx[i], rmx[i]) - height[i]
return res
class Solution {
public int trap(int[] height) {
int n = height.length;
if (n < 3) {
return 0;
}
int[] lmx = new int[n];
int[] rmx = new int[n];
lmx[0] = height[0];
rmx[n - 1] = height[n - 1];
for (int i = 1; i < n; ++i) {
lmx[i] = Math.max(lmx[i - 1], height[i]);
rmx[n - 1 - i] = Math.max(rmx[n - i], height[n - i - 1]);
}
int res = 0;
for (int i = 0; i < n; ++i) {
res += Math.min(lmx[i], rmx[i]) - height[i];
}
return res;
}
}
function trap(height: number[]): number {
let ans = 0;
let left = 0,
right = height.length - 1;
let maxLeft = 0,
maxRight = 0;
while (left < right) {
if (height[left] < height[right]) {
// move left
if (height[left] >= maxLeft) {
maxLeft = height[left];
} else {
ans += maxLeft - height[left];
}
++left;
} else {
// move right
if (height[right] >= maxRight) {
maxRight = height[right];
} else {
ans += maxRight - height[right];
}
--right;
}
}
return ans;
}
class Solution {
public:
int trap(vector<int>& height) {
int n = height.size();
if (n < 3) {
return 0;
}
vector<int> lmx(n, height[0]);
vector<int> rmx(n, height[n - 1]);
for (int i = 1; i < n; ++i) {
lmx[i] = max(lmx[i - 1], height[i]);
rmx[n - 1 - i] = max(rmx[n - i], height[n - 1 - i]);
}
int res = 0;
for (int i = 0; i < n; ++i) {
res += min(lmx[i], rmx[i]) - height[i];
}
return res;
}
};
func trap(height []int) int {
n := len(height)
if n < 3 {
return 0
}
lmx, rmx := make([]int, n), make([]int, n)
lmx[0], rmx[n-1] = height[0], height[n-1]
for i := 1; i < n; i++ {
lmx[i] = max(lmx[i-1], height[i])
rmx[n-1-i] = max(rmx[n-i], height[n-1-i])
}
res := 0
for i := 0; i < n; i++ {
res += min(lmx[i], rmx[i]) - height[i]
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}