-
Notifications
You must be signed in to change notification settings - Fork 28
/
run_intermediate_expansion.py
124 lines (93 loc) · 3.51 KB
/
run_intermediate_expansion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import can_be_solution
from lang import score_func as uncached_score_func
from common_interactive import diffprompt
from prompts import prompt, min_lines, expansion_count, check_func, check_string, test_dict
from lang import run_tests
if test_dict and run_tests:
uncached_score_func_before_dict = uncached_score_func
uncached_score_func = lambda x: uncached_score_func_before_dict(x, test_dict)
from common_cache import create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
from common import limit_depth, max_completion_depth, limit_tokens
from common_stats import stats
import llm
import time
import common_wandb
from cmdline import args
node_dups_counter = 0
def generate_complete(text, montecarlo, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None, current_completion_depth
prev = text
texts = llm.generate(text, 1)
text = texts[0]
score = score_func(text)
print(diffprompt(prev, texts))
if score is not None:
if score < 0:
return None, current_completion_depth
else:
if can_be_solution(text, min_lines, check_func, check_string, test_dict):
montecarlo.solution = text
return text, current_completion_depth
else:
return generate_complete(text, montecarlo, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node):
return
pre_gen_time = time.time()
pre_gen_toks = llm.token_counter
text, depth = generate_complete(node.state, montecarlo)
gen_stat = common_wandb.compute_gen_stat(pre_gen_time, pre_gen_toks, text, depth)
if text is None:
node.update_win_value(-1)
else:
child = Node(text)
if node.is_widen_node:
node.visits += 1
node.parent.add_child(child)
# Check siblings for duplicates
for c in node.parent.children:
if c.state == text:
global node_dups_counter
node_dups_counter += 1
print("found string-duplicated node:")
print(text)
else:
node.add_child(child)
# Update values
child.update_win_value(1)
child.update_policy_value(1)
# Add widen node
widen = Node(text)
widen.is_widen_node = True
child.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
common_wandb.log_tree(montecarlo, gen_stat, node)
# Check on token limit after this generation
if limit_tokens():
if montecarlo.solution is None:
montecarlo.solution = "Token limit reached"
print("Token limit reached, no solution found")
def main(mins_timeout=None, prompt=prompt):
init_time = time.time()
montecarlo = MonteCarlo(Node(prompt), mins_timeout)
# Add widen node to root
widen = Node(prompt)
widen.is_widen_node = True
montecarlo.root_node.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
# Update child finder
montecarlo.child_finder = child_finder
# Run search
montecarlo.simulate(expansion_count)
common_wandb.compute_summary(montecarlo, node_dups_counter, init_time)
print("CHOSEN SOLUTION")
print(montecarlo.solution)
stats(montecarlo)
print("cache stats", cache_stats)
return cache_stats
if __name__ == "__main__":
main()