-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
150 lines (118 loc) · 4.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from torchvision import datasets, models, transforms
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import torch
import time
import copy
import os
import sys
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data7'
dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'test']}
dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=8,
shuffle=True, num_workers=4)
for x in ['train', 'test']}
dset_sizes = {x: len(dsets[x]) for x in ['train', 'test']}
dset_classes = dsets['train'].classes
# use_gpu = torch.cuda.is_available()
use_gpu = False
print("Using GPU {}".format(use_gpu))
def train_model(model, criterion, optimizer, lr_scheduler, num_epochs=25):
since = time.time()
best_model = model
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
optimizer = lr_scheduler(optimizer, epoch)
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in dset_loaders[phase]:
# get the inputs
inputs, labels = data
# wrap them in Variable
if use_gpu:
inputs, labels = Variable(inputs.cuda()), \
Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.data[0]
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dset_sizes[phase]
epoch_acc = running_corrects / dset_sizes[phase] *100
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model = copy.deepcopy(model)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best test Acc: {:4f}'.format(best_acc))
return best_model
def exp_lr_scheduler(optimizer, epoch, init_lr=0.001, lr_decay_epoch=7):
"""Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs."""
lr = init_lr * (0.1**(epoch // lr_decay_epoch))
if epoch % lr_decay_epoch == 0:
print('LR is set to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
model_ft = models.inception(pretrained=True)
num_ftrs = model_ft.fc.in_features
# we have 13classes in my task
model_ft.fc = nn.Linear(num_ftrs, 7)
model_ft.fc.weight.data.normal_(mean=0, std=0.01)
if use_gpu:
model_ft = model_ft.cuda()
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
###############
#Train Network#
##############
#model_ft.load_state_dict(torch.load('model/res10c20e.pkl'))
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=1)
#############
#Save model#
############
path = 'model/res3410c10e.pkl'
#torch.save(model_ft.state_dict(), path)