-
Notifications
You must be signed in to change notification settings - Fork 97
/
traversal_test.go
97 lines (89 loc) · 2.46 KB
/
traversal_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Copyright (c) 2016, Peter Mrekaj. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE.txt file.
package btrees
import (
"reflect"
"testing"
)
func TestInorderTraversal(t *testing.T) {
A := &BTreeP{Data: "A"}
B := &BTreeP{Data: "B"}
C := &BTreeP{Data: "C"}
D := &BTreeP{Data: "D"}
E := &BTreeP{Data: "E"}
F := &BTreeP{Data: "F"}
G := &BTreeP{Data: "G"}
H := &BTreeP{Data: "H"}
I := &BTreeP{Data: "I"}
J := &BTreeP{Data: "J"}
K := &BTreeP{Data: "K"}
L := &BTreeP{Data: "L"}
M := &BTreeP{Data: "M"}
N := &BTreeP{Data: "N"}
O := &BTreeP{Data: "O"}
P := &BTreeP{Data: "P"}
// A Binary Tree of height 5 with root in "A".
A.parent, A.left, A.right = nil, B, I
// A left subtree:
B.parent, B.left, B.right = A, C, F
C.parent, C.left, C.right = B, D, E
D.parent, E.parent = C, C
F.parent, F.left, F.right = B, nil, G
G.parent, G.left, G.right = F, H, nil
H.parent = G
// A right subtree:
I.parent, I.left, I.right = A, J, O
J.parent, J.left, J.right = I, nil, K
K.parent, K.left, K.right = J, L, N
N.parent = K
L.parent, L.left, L.right = K, nil, M
M.parent = L
O.parent, O.left, O.right = I, nil, P
P.parent = O
want := []interface{}{"D", "C", "E", "B", "F", "H", "G", "A", "J", "L", "M", "K", "N", "I", "O", "P"}
got := InorderTraversal(A)
if !reflect.DeepEqual(got, want) {
t.Errorf("InorderTraversal got %v; want %v", got, want)
}
}
func BenchmarkInorderTraversal(b *testing.B) {
A := &BTreeP{Data: "A"}
B := &BTreeP{Data: "B"}
C := &BTreeP{Data: "C"}
D := &BTreeP{Data: "D"}
E := &BTreeP{Data: "E"}
F := &BTreeP{Data: "F"}
G := &BTreeP{Data: "G"}
H := &BTreeP{Data: "H"}
I := &BTreeP{Data: "I"}
J := &BTreeP{Data: "J"}
K := &BTreeP{Data: "K"}
L := &BTreeP{Data: "L"}
M := &BTreeP{Data: "M"}
N := &BTreeP{Data: "N"}
O := &BTreeP{Data: "O"}
P := &BTreeP{Data: "P"}
// A Binary Tree of height 5 with root in "A".
A.parent, A.left, A.right = nil, B, I
// A left subtree:
B.parent, B.left, B.right = A, C, F
C.parent, C.left, C.right = B, D, E
D.parent, E.parent = C, C
F.parent, F.left, F.right = B, nil, G
G.parent, G.left, G.right = F, H, nil
H.parent = G
// A right subtree:
I.parent, I.left, I.right = A, J, O
J.parent, J.left, J.right = I, nil, K
K.parent, K.left, K.right = J, L, N
N.parent = K
L.parent, L.left, L.right = K, nil, M
M.parent = L
O.parent, O.left, O.right = I, nil, P
P.parent = O
b.ResetTimer()
for i := 0; i < b.N; i++ {
InorderTraversal(A)
}
}