-
Notifications
You must be signed in to change notification settings - Fork 7
/
neural_models.py
65 lines (54 loc) · 3.03 KB
/
neural_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch.nn as nn
import torch.nn.functional as F
import config
from utils import error_callback
class CAN(nn.Module):
def __init__(self, no_of_filters=config.can_filter_count):
super(CAN, self).__init__()
# CAN24 architecture: 3 RGB + 8 Filter Channels -> 11 InChannels
in_count = no_of_filters + 3
self.conv1 = nn.Conv2d(in_channels=in_count, out_channels=24, kernel_size=(3, 3), dilation=1,
padding=(1, 1)) # weight shape [24,8,3,3]
self.conv2 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=2,
padding=(2, 2)) # weight shape [24,24,3,3]
self.conv3 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=4,
padding=(4, 4)) # weight shape ""
self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=8,
padding=(8, 8)) # weight shape ""
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=16,
padding=(16, 16)) # weight shape ""
self.conv6 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=32,
padding=(32, 32)) # weight shape ""
self.conv7 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=64,
padding=(64, 64)) # weight shape ""
self.conv9 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=(3, 3), dilation=1,
padding=(1, 1)) # weight shape ""
self.conv10 = nn.Conv2d(in_channels=24, out_channels=3, kernel_size=(1, 1),
dilation=1) # weight shape [3,24,1,1]
def forward(self, x):
inshape = x.shape
x = F.leaky_relu(self.conv1(x), negative_slope=0.2)
x = F.leaky_relu(self.conv2(x), negative_slope=0.2)
x = F.leaky_relu(self.conv3(x), negative_slope=0.2)
x = F.leaky_relu(self.conv4(x), negative_slope=0.2)
x = F.leaky_relu(self.conv5(x), negative_slope=0.2)
x = F.leaky_relu(self.conv6(x), negative_slope=0.2)
x = F.leaky_relu(self.conv7(x), negative_slope=0.2)
x = F.leaky_relu(self.conv9(x), negative_slope=0.2)
x = self.conv10(x) # no activation in last layer
if inshape[-2] != x.shape[-2] or inshape[-1] != x.shape[-1]:
error_callback('forward_conv')
return x
class NIMA_VGG(nn.Module):
def __init__(self, base_model, num_classes=10):
super(NIMA_VGG, self).__init__()
self.features = base_model.features
self.classifier = nn.Sequential( # self.classifier describes only the last layer
nn.Dropout(p=0.75),
nn.Linear(in_features=25088, out_features=num_classes),
nn.Softmax(dim=1))
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out