-
Notifications
You must be signed in to change notification settings - Fork 147
/
SVGG.py
74 lines (72 loc) · 2.68 KB
/
SVGG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential,load_model
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
import numpy as np
import os
def CNN(trainDir, validationDir, classNum):
model = Sequential()
model.add(Convolution2D(4, 3, 3, input_shape=(img_width, img_height, 1)))
model.add(Activation('relu'))
model.add(Convolution2D(4, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# layer
model.add(Convolution2D(8, 3, 3))
model.add(Activation('relu'))
model.add(Convolution2D(8, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Convolution2D(16, 3, 3))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# layer
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
# model.add(Dropout(0.5))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dropout(0.6))
model.add(Dense(classNum))
model.add(Activation('softmax'))
# test
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zca_whitening=True,
zoom_range=0.2,
horizontal_flip=False)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1./255, zca_whitening=True)
train_generator = train_datagen.flow_from_directory(
trainDir,
target_size=(img_width, img_height),
batch_size=32,
color_mode='grayscale',
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validationDir,
target_size=(img_width, img_height),
batch_size=32,
color_mode='grayscale',
class_mode='categorical')
model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch,
validation_data=validation_generator,
nb_val_samples=nb_validation_samples)
return model
if __name__ == '__main__':
cropModel = CNN(train_data_dir, validation_data_dir, 2)
cropModel.save_weights('cropWeights.h5')
cropModel.save('cropModel.h5')
classModel = CNN(train_class, validation_class, 25)
classModel.save_weights('classWeights.h5')
classModel.save('classModel.h5')