forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
the-k-weakest-rows-in-a-matrix.py
96 lines (84 loc) · 2.84 KB
/
the-k-weakest-rows-in-a-matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Time: O(m * n)
# Space: O(k)
class Solution(object):
def kWeakestRows(self, mat, k):
"""
:type mat: List[List[int]]
:type k: int
:rtype: List[int]
"""
result, lookup = [], set()
for j in xrange(len(mat[0])):
for i in xrange(len(mat)):
if mat[i][j] or i in lookup:
continue
lookup.add(i)
result.append(i)
if len(result) == k:
return result
for i in xrange(len(mat)):
if i in lookup:
continue
lookup.add(i)
result.append(i)
if len(result) == k:
break
return result
# Time: O(m * n)
# Space: O(k)
import collections
class Solution2(object):
def kWeakestRows(self, mat, k):
"""
:type mat: List[List[int]]
:type k: int
:rtype: List[int]
"""
lookup = collections.OrderedDict()
for j in xrange(len(mat[0])):
for i in xrange(len(mat)):
if mat[i][j] or i in lookup:
continue
lookup[i] = True
if len(lookup) == k:
return lookup.keys()
for i in xrange(len(mat)):
if i in lookup:
continue
lookup[i] = True
if len(lookup) == k:
break
return lookup.keys()
# Time: O(m * n + klogk)
# Space: O(m)
import random
class Solution3(object):
def kWeakestRows(self, mat, k):
"""
:type mat: List[List[int]]
:type k: int
:rtype: List[int]
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def partition_around_pivot(left, right, pivot_idx, nums, compare):
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in xrange(left, right):
if compare(nums[i], nums[right]):
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = random.randint(left, right)
new_pivot_idx = partition_around_pivot(left, right, pivot_idx, nums, compare)
if new_pivot_idx == n:
return
elif new_pivot_idx > n:
right = new_pivot_idx - 1
else: # new_pivot_idx < n
left = new_pivot_idx + 1
nums = [(sum(mat[i]), i) for i in xrange(len(mat))]
nth_element(nums, k)
return map(lambda x: x[1], sorted(nums[:k]))