forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
string-transformation.py
144 lines (130 loc) · 4.41 KB
/
string-transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Time: O(n + logk)
# Space: O(n)
# dp, math, kmp
class Solution(object):
def numberOfWays(self, s, t, k):
"""
:type s: str
:type t: str
:type k: int
:rtype: int
"""
MOD = 10**9+7
def getPrefix(pattern):
prefix = [-1]*len(pattern)
j = -1
for i in xrange(1, len(pattern)):
while j+1 > 0 and pattern[j+1] != pattern[i]:
j = prefix[j]
if pattern[j+1] == pattern[i]:
j += 1
prefix[i] = j
return prefix
def KMP(text, pattern):
prefix = getPrefix(pattern)
j = -1
for i in xrange(len(text)):
while j+1 > 0 and pattern[j+1] != text[i]:
j = prefix[j]
if pattern[j+1] == text[i]:
j += 1
if j+1 == len(pattern):
yield i-j
j = prefix[j]
n = len(s)
dp = [0]*2
dp[1] = ((pow(n-1, k, MOD)-(-1)**k)*pow(n, MOD-2, MOD))%MOD
dp[0] = (dp[1]+(-1)**k)%MOD
return reduce(lambda a, b: (a+b)%MOD, (dp[int(i != 0)] for i in KMP(s+s[:-1], t)), 0)
# Time: O(n + logk)
# Space: O(n)
# dp, matrix exponentiation, kmp
class Solution2(object):
def numberOfWays(self, s, t, k):
"""
:type s: str
:type t: str
:type k: int
:rtype: int
"""
MOD = 10**9+7
def matrix_mult(A, B):
ZB = zip(*B)
return [[sum(a*b % MOD for a, b in itertools.izip(row, col)) % MOD for col in ZB] for row in A]
def matrix_expo(A, K):
result = [[int(i == j) for j in xrange(len(A))] for i in xrange(len(A))]
while K:
if K % 2:
result = matrix_mult(result, A)
A = matrix_mult(A, A)
K /= 2
return result
def getPrefix(pattern):
prefix = [-1]*len(pattern)
j = -1
for i in xrange(1, len(pattern)):
while j+1 > 0 and pattern[j+1] != pattern[i]:
j = prefix[j]
if pattern[j+1] == pattern[i]:
j += 1
prefix[i] = j
return prefix
def KMP(text, pattern):
prefix = getPrefix(pattern)
j = -1
for i in xrange(len(text)):
while j+1 > 0 and pattern[j+1] != text[i]:
j = prefix[j]
if pattern[j+1] == text[i]:
j += 1
if j+1 == len(pattern):
yield i-j
j = prefix[j]
n = len(s)
T = [[0, 1],
[n-1, (n-1)-1]]
dp = [1, 0]
dp = matrix_mult([dp], matrix_expo(T, k))[0] # [dp[0], dp[1]] * T^k
return reduce(lambda a, b: (a+b)%MOD, (dp[int(i != 0)] for i in KMP(s+s[:-1], t)), 0)
# Time: O(n + logk)
# Space: O(n)
# dp, matrix exponentiation, z-function
class Solution3(object):
def numberOfWays(self, s, t, k):
"""
:type s: str
:type t: str
:type k: int
:rtype: int
"""
MOD = 10**9+7
def matrix_mult(A, B):
ZB = zip(*B)
return [[sum(a*b % MOD for a, b in itertools.izip(row, col)) % MOD for col in ZB] for row in A]
def matrix_expo(A, K):
result = [[int(i == j) for j in xrange(len(A))] for i in xrange(len(A))]
while K:
if K % 2:
result = matrix_mult(result, A)
A = matrix_mult(A, A)
K /= 2
return result
# Template: https://cp-algorithms.com/string/z-function.html
def z_function(s): # Time: O(n), Space: O(n)
z = [0]*len(s)
l, r = 0, 0
for i in xrange(1, len(z)):
if i <= r:
z[i] = min(r-i+1, z[i-l])
while i+z[i] < len(z) and s[z[i]] == s[i+z[i]]:
z[i] += 1
if i+z[i]-1 > r:
l, r = i, i+z[i]-1
return z
n = len(s)
T = [[0, 1],
[n-1, (n-1)-1]]
dp = [1, 0]
dp = matrix_mult([dp], matrix_expo(T, k))[0] # [dp[0], dp[1]] * T^k
z = z_function(t+s+s[:-1])
return reduce(lambda a, b: (a+b)%MOD, (dp[int(i != 0)] for i in xrange(n) if z[i+len(t)] >= len(t)), 0)