forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apply-operations-to-maximize-score.py
77 lines (68 loc) · 2.69 KB
/
apply-operations-to-maximize-score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Time: O(sqrt(r) + n * (logr + pi(sqrt(r))) + klogn) = O(sqrt(r) + n * (logr + sqrt(r)/log(sqrt(r))) + klogn), m is max(k for _, k in queries), pi(n) = number of primes in a range [1, n] = O(n/logn) by prime number theorem, see https://en.wikipedia.org/wiki/Prime_number_theorem
# Space: O(sqrt(r) + n)
import heapq
# number theory, mono stack, greedy, sort, heap
class Solution(object):
def maximumScore(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
MOD = 10**9+7
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes # len(primes) = O(n/(logn-1)), reference: https://math.stackexchange.com/questions/264544/how-to-find-number-of-prime-numbers-up-to-to-n
lookup = {}
def count_of_distinct_prime_factors(x):
y = x
if y not in lookup:
cnt = 0
for p in primes:
if p*p > x:
break
if x%p != 0:
continue
cnt += 1
while x%p == 0:
x //= p
if x != 1:
cnt += 1
lookup[y] = cnt
return lookup[y]
primes = linear_sieve_of_eratosthenes(int(max(nums)**0.5))
scores = [count_of_distinct_prime_factors(x) for x in nums]
left = [-1]*len(scores)
stk = [-1]
for i in xrange(len(scores)):
while stk[-1] != -1 and scores[stk[-1]] < scores[i]: # if multiple such elements exist, choose the one with the smallest index
stk.pop()
left[i] = stk[-1]
stk.append(i)
right = [-1]*len(scores)
stk = [len(scores)]
for i in reversed(xrange(len(scores))):
while stk[-1] != len(scores) and scores[stk[-1]] <= scores[i]:
stk.pop()
right[i] = stk[-1]
stk.append(i)
result = 1
max_heap = [(-x, i) for i, x in enumerate(nums)]
heapq.heapify(max_heap)
while max_heap:
_, i = heapq.heappop(max_heap)
c = min((i-left[i])*(right[i]-i), k)
result = (result*pow(nums[i], c, MOD))%MOD
k -= c
if not k:
break
return result