forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
string-transformation.cpp
224 lines (208 loc) · 6.79 KB
/
string-transformation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Time: O(n + logk)
// Space: O(n)
// dp, math, kmp
class Solution {
public:
int numberOfWays(string s, string t, long long k) {
const int n = size(s);
vector<int> dp(2);
dp[1] = (((pow(n - 1, k, MOD) - pow(-1, k, MOD)) * pow(n, MOD - 2, MOD)) % MOD + MOD) % MOD;
dp[0] = (dp[1] + pow(-1, k, MOD)) % MOD;
int result = 0;
for (const auto& i : KMP(s + s.substr(0, size(s) - 1), t)) {
result = (result + dp[static_cast<int>(i != 0)]) % MOD;
}
return result;
}
private:
int64_t pow(int64_t a, int64_t b, int64_t m) {
a %= m;
int64_t result = 1;
while (b) {
if (b & 1) {
result = (result * a) % m;
}
a = (a * a) % m;
b >>= 1;
}
return result;
}
vector<int> KMP(const string& text, const string& pattern) {
vector<int> result;
const vector<int> prefix = getPrefix(pattern);
int j = -1;
for (int i = 0; i < text.length(); ++i) {
while (j > -1 && pattern[j + 1] != text[i]) {
j = prefix[j];
}
if (pattern[j + 1] == text[i]) {
++j;
}
if (j == pattern.length() - 1) {
result.emplace_back(i - j);
j = prefix[j];
}
}
return result;
}
vector<int> getPrefix(const string& pattern) {
vector<int> prefix(pattern.length(), -1);
int j = -1;
for (int i = 1; i < pattern.length(); ++i) {
while (j > -1 && pattern[j + 1] != pattern[i]) {
j = prefix[j];
}
if (pattern[j + 1] == pattern[i]) {
++j;
}
prefix[i] = j;
}
return prefix;
}
const int MOD = 1e9 + 7;
};
// Time: O(n + logk)
// Space: O(n)
// dp, matrix exponentiation, kmp
class Solution2 {
public:
int numberOfWays(string s, string t, long long k) {
const int n = size(s);
vector<vector<int>> T = {{ 0, 1},
{n - 1, (n - 1) - 1}};
const auto dp = matrixMult({{1, 0}}, matrixExpo(T, k))[0]; // [dp[0], dp[1]] * T^k
int result = 0;
for (const auto& i : KMP(s + s.substr(0, size(s) - 1), t)) {
result = (result + dp[static_cast<int>(i != 0)]) % MOD;
}
return result;
}
private:
vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int64_t pow) {
vector<vector<int>> result(A.size(), vector<int>(A.size()));
vector<vector<int>> A_exp(A);
for (int i = 0; i < A.size(); ++i) {
result[i][i] = 1;
}
while (pow) {
if (pow % 2 == 1) {
result = matrixMult(result, A_exp);
}
A_exp = matrixMult(A_exp, A_exp);
pow /= 2;
}
return result;
}
vector<vector<int>> matrixMult(const vector<vector<int>>& A, const vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size()));
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B[0].size(); ++j) {
int64_t entry = 0;
for (int k = 0; k < B.size(); ++k) {
entry = (static_cast<int64_t>(A[i][k]) * B[k][j] % MOD + entry) % MOD;
}
result[i][j] = static_cast<int>(entry);
}
}
return result;
}
vector<int> KMP(const string& text, const string& pattern) {
vector<int> result;
const vector<int> prefix = getPrefix(pattern);
int j = -1;
for (int i = 0; i < text.length(); ++i) {
while (j > -1 && pattern[j + 1] != text[i]) {
j = prefix[j];
}
if (pattern[j + 1] == text[i]) {
++j;
}
if (j == pattern.length() - 1) {
result.emplace_back(i - j);
j = prefix[j];
}
}
return result;
}
vector<int> getPrefix(const string& pattern) {
vector<int> prefix(pattern.length(), -1);
int j = -1;
for (int i = 1; i < pattern.length(); ++i) {
while (j > -1 && pattern[j + 1] != pattern[i]) {
j = prefix[j];
}
if (pattern[j + 1] == pattern[i]) {
++j;
}
prefix[i] = j;
}
return prefix;
}
const int MOD = 1e9 + 7;
};
// Time: O(n + logk)
// Space: O(n)
// dp, matrix exponentiation, z-function
class Solution3 {
public:
int numberOfWays(string s, string t, long long k) {
const int n = size(s);
vector<vector<int>> T = {{ 0, 1},
{n - 1, (n - 1) - 1}};
const auto dp = matrixMult({{1, 0}}, matrixExpo(T, k))[0]; // [dp[0], dp[1]] * T^k
const auto& z = z_function(t + s + s.substr(0, size(s) - 1));
int result = 0;
for (int i = 0; i < n; ++i) {
if (z[i + size(t)] >= size(t)) {
result = (result + dp[static_cast<int>(i != 0)]) % MOD;
}
}
return result;
}
private:
vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int64_t pow) {
vector<vector<int>> result(A.size(), vector<int>(A.size()));
vector<vector<int>> A_exp(A);
for (int i = 0; i < A.size(); ++i) {
result[i][i] = 1;
}
while (pow) {
if (pow % 2 == 1) {
result = matrixMult(result, A_exp);
}
A_exp = matrixMult(A_exp, A_exp);
pow /= 2;
}
return result;
}
vector<vector<int>> matrixMult(const vector<vector<int>>& A, const vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size()));
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B[0].size(); ++j) {
int64_t entry = 0;
for (int k = 0; k < B.size(); ++k) {
entry = (static_cast<int64_t>(A[i][k]) * B[k][j] % MOD + entry) % MOD;
}
result[i][j] = static_cast<int>(entry);
}
}
return result;
}
// Template: https://cp-algorithms.com/string/z-function.html
vector<int> z_function(const string& s) { // Time: O(n), Space: O(n)
vector<int> z(size(s));
for (int i = 1, l = 0, r = 0; i < size(z); ++i) {
if (i <= r) {
z[i] = min(r - i + 1, z[i - l]);
}
while (i + z[i] < size(z) && s[z[i]] == s[i + z[i]]) {
++z[i];
}
if (i + z[i] - 1 > r) {
l = i, r = i + z[i] - 1;
}
}
return z;
}
const int MOD = 1e9 + 7;
};