forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
number-of-beautiful-integers-in-the-range.cpp
195 lines (179 loc) · 8.56 KB
/
number-of-beautiful-integers-in-the-range.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Time: O(n^2 * k), n = len(str(high))
// Space: O(n^2 * k)
// memoization (faster but more space)
class Solution {
public:
int numberOfBeautifulIntegers(int low, int high, int k) {
enum {TIGHT, UNTIGHT, UNBOUND};
const auto& to_digits = [](int x) {
vector<int> result;
for (; x; x /= 10) {
result.emplace_back(x % 10);
}
reverse(begin(result), end(result));
return !empty(result) ? result : vector<int>{0};
};
const auto& f = [&](int x) {
const auto& digits = to_digits(x);
vector<vector<vector<vector<int>>>> lookup(size(digits), vector<vector<vector<int>>>(3, vector<vector<int>>(2 * size(digits) + 1, vector<int>(k, -1))));
function<int (int, int, int, int)> memoization = [&](int i, int state, int diff, int total) {
if (i == size(digits)) {
return static_cast<int>(state != UNBOUND && diff == size(digits) && total == 0);
}
if (lookup[i][state][diff][total] == -1) {
int result = static_cast<int>(i != 0 && diff == size(digits) && total == 0); // count if the beautiful integer x s.t. len(str(x)) < len(digits)
for (int d = (i == 0) ? 1 : 0; d <= 9; ++d) {
int new_state = state;
if (state == TIGHT && d != digits[i]) {
new_state = d < digits[i] ? UNTIGHT : UNBOUND;
}
const int new_diff = diff + (d % 2 == 0 ? 1 : -1);
const int new_total = (total * 10 + d) % k;
result += memoization(i + 1, new_state, new_diff, new_total);
}
lookup[i][state][diff][total] = result;
}
return lookup[i][state][diff][total];
};
return memoization(0, TIGHT, size(digits), 0);
};
return f(high) - f(low - 1);
}
};
// Time: O(n^2 * k), n = len(str(high))
// Space: O(n * k)
// dp (slower but less space)
class Solution2 {
public:
int numberOfBeautifulIntegers(int low, int high, int k) {
enum {TIGHT, UNTIGHT, UNBOUND};
const auto& to_digits = [](int x) {
vector<int> result;
for (; x; x /= 10) {
result.emplace_back(x % 10);
}
reverse(begin(result), end(result));
return !empty(result) ? result : vector<int>{0};
};
const auto& f = [&](int x) {
const auto& digits = to_digits(x);
vector<vector<vector<int64_t>>> dp(3, vector<vector<int64_t>>(2 * size(digits) + 1, vector<int64_t>(k)));
for (int tight = 0; tight < 2; ++tight) {
for (const auto& state : {TIGHT, UNTIGHT}) {
dp[state][size(digits)][0] = 1;;
}
}
for (int i = size(digits) - 1; i >= 0; --i) {
vector<vector<vector<int64_t>>> new_dp(3, vector<vector<int64_t>>(2 * size(digits) + 1, vector<int64_t>(k)));
for (const auto& state : {TIGHT, UNTIGHT, UNBOUND}) {
new_dp[state][size(digits)][0] = static_cast<int>(i != 0); // count if the beautiful integer x s.t. len(str(x)) < len(digits)
for (int d = (i == 0) ? 1 : 0; d <= 9; ++d) {
int new_state = state;
if (state == TIGHT && d != digits[i]) {
new_state = d < digits[i] ? UNTIGHT : UNBOUND;
}
for (int diff = 0; diff < 2 * size(digits) + 1; ++diff) {
const int new_diff = diff + (d % 2 == 0 ? 1 : -1);
if (!(0 <= new_diff && new_diff < 2 * size(digits) + 1)) {
continue;
}
for (int total = 0; total < k; ++total) {
const int new_total = (total * 10 + d) % k;
new_dp[state][diff][total] += dp[new_state][new_diff][new_total];
}
}
}
}
dp = move(new_dp);
}
return dp[TIGHT][size(digits)][0];
};
return f(high) - f(low - 1);
}
};
// Time: O(n^2 * k), n = len(str(high))
// Space: O(n^2 * k)
// memoization (faster but more space)
class Solution3 {
public:
int numberOfBeautifulIntegers(int low, int high, int k) {
const auto& to_digits = [](int x) {
vector<int> result;
for (; x; x /= 10) {
result.emplace_back(x % 10);
}
reverse(begin(result), end(result));
return !empty(result) ? result : vector<int>{0};
};
const auto& f = [&](int x) {
const auto& digits = to_digits(x);
vector<vector<vector<vector<vector<int>>>>> lookup(size(digits), vector<vector<vector<vector<int>>>>(2, vector<vector<vector<int>>>(2, vector<vector<int>>(2 * size(digits) + 1, vector<int>(k, -1)))));
function<int (int, int, int, int, int)> memoization = [&](int i, int zero, int tight, int diff, int total) {
if (i == size(digits)) {
return static_cast<int>(zero == 0 && diff == size(digits) && total == 0);
}
if (lookup[i][zero][tight][diff][total] == -1) {
int result = 0;
for (int d = 0; d <= (tight ? digits[i] : 9); ++d) {
const int new_zero = static_cast<int>(zero && d == 0);
const int new_tight = static_cast<int>(tight && d == digits[i]);
const int new_diff = diff + (new_zero == 0 ? (d % 2 == 0 ? 1 : -1): 0);
const int new_total = (total * 10 + d) % k;
result += memoization(i + 1, new_zero, new_tight, new_diff, new_total);
}
lookup[i][zero][tight][diff][total] = result;
}
return lookup[i][zero][tight][diff][total];
};
return memoization(0, 1, 1, size(digits), 0);
};
return f(high) - f(low - 1);
}
};
// Time: O(n^2 * k), n = len(str(high))
// Space: O(n * k)
// dp (slower but less space)
class Solution4 {
public:
int numberOfBeautifulIntegers(int low, int high, int k) {
const auto& to_digits = [](int x) {
vector<int> result;
for (; x; x /= 10) {
result.emplace_back(x % 10);
}
reverse(begin(result), end(result));
return !empty(result) ? result : vector<int>{0};
};
const auto& f = [&](int x) {
const auto& digits = to_digits(x);
vector<vector<vector<vector<int64_t>>>> dp(2, vector<vector<vector<int64_t>>>(2, vector<vector<int64_t>>(2 * size(digits) + 1, vector<int64_t>(k))));
for (int tight = 0; tight < 2; ++tight) {
dp[0][tight][size(digits)][0] = 1;
}
for (int i = size(digits) - 1; i >= 0; --i) {
vector<vector<vector<vector<int64_t>>>> new_dp(2, vector<vector<vector<int64_t>>>(2, vector<vector<int64_t>>(2 * size(digits) + 1, vector<int64_t>(k))));
for (int zero = 0; zero < 2; ++zero) {
for (int tight = 0; tight < 2; ++tight) {
for (int d = 0; d <= (tight ? digits[i] : 9); ++d) {
const int new_zero = static_cast<int>(zero && d == 0);
const int new_tight = static_cast<int>(tight && d == digits[i]);
for (int diff = 0; diff < 2 * size(digits) + 1; ++diff) {
const int new_diff = diff + (new_zero == 0 ? (d % 2 == 0 ? 1 : -1): 0);
if (!(0 <= new_diff && new_diff < 2 * size(digits) + 1)) {
continue;
}
for (int total = 0; total < k; ++total) {
const int new_total = (total * 10 + d) % k;
new_dp[zero][tight][diff][total] += dp[new_zero][new_tight][new_diff][new_total];
}
}
}
}
}
dp = move(new_dp);
}
return dp[1][1][size(digits)][0];
};
return f(high) - f(low - 1);
}
};