forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
count-k-subsequences-of-a-string-with-maximum-beauty.cpp
69 lines (64 loc) · 2.19 KB
/
count-k-subsequences-of-a-string-with-maximum-beauty.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// Time: O(n)
// Space: O(1)
// greedy, quick select, combinatorics
class Solution {
public:
int countKSubsequencesWithMaxBeauty(string s, int k) {
unordered_map<int, int> cnt;
for (const auto& c : s) {
++cnt[c];
}
if (size(cnt) < k) {
return 0;
}
vector<int> freqs;
freqs.reserve(26);
for (const auto& [_, v] : cnt) {
freqs.emplace_back(v);
}
nth_element(begin(freqs), begin(freqs) + (k - 1), end(freqs), greater<int>());
int result = 1;
for (int i = 0; i < k; ++i) {
result = mulmod(result, freqs[i]);
}
const int n = count(cbegin(freqs), cend(freqs), freqs[k - 1]);
const int r = count(cbegin(freqs), cbegin(freqs) + k, freqs[k - 1]);
return mulmod(result, nCr(n, r));
}
private:
int nCr(int n, int k) {
while (size(inv_) <= n) { // lazy initialization
fact_.emplace_back(mulmod(fact_.back(), size(inv_)));
inv_.emplace_back(mulmod(inv_[MOD % size(inv_)], MOD - MOD / size(inv_))); // https://cp-algorithms.com/algebra/module-inverse.html
inv_fact_.emplace_back(mulmod(inv_fact_.back(), inv_.back()));
}
return mulmod(mulmod(fact_[n], inv_fact_[n - k]), inv_fact_[k]);
}
uint32_t addmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
if (MOD - a <= b) {
b -= MOD; // relied on unsigned integer overflow in order to give the expected results
}
return a + b;
}
// reference: https://stackoverflow.com/questions/12168348/ways-to-do-modulo-multiplication-with-primitive-types
uint32_t mulmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
uint32_t result = 0;
if (a < b) {
swap(a, b);
}
while (b > 0) {
if (b % 2 == 1) {
result = addmod(result, a);
}
a = addmod(a, a);
b /= 2;
}
return result;
}
static const uint32_t MOD = 1e9 + 7;
vector<int> fact_ = {1, 1};
vector<int> inv_ = {1, 1};
vector<int> inv_fact_ = {1, 1};
};