-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
DESCRIPTION
83 lines (83 loc) · 2.6 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Package: mcboost
Type: Package
Title: Multi-Calibration Boosting
Version: 0.4.3-9000
Authors@R:
c(person(given = "Florian",
family = "Pfisterer",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0001-8867-762X")),
person(given = "Susanne",
family = "Dandl",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0003-4324-4163")),
person(given = "Christoph",
family = "Kern",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0001-7363-4299")),
person(given = "Carolin",
family = "Becker",
role = "ctb"),
person(given = "Bernd",
family = "Bischl",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0001-6002-6980")),
person(given = "Sebastian",
family = "Fischer",
role = c("ctb", "cre"),
email = "[email protected]")
)
Description: Implements 'Multi-Calibration Boosting' (2018) <https://proceedings.mlr.press/v80/hebert-johnson18a.html> and
'Multi-Accuracy Boosting' (2019) <doi:10.48550/arXiv.1805.12317> for the multi-calibration of a machine learning model's prediction.
'MCBoost' updates predictions for sub-groups in an iterative fashion in order to mitigate biases like poor calibration or large accuracy differences across subgroups.
Multi-Calibration works best in scenarios where the underlying data & labels are unbiased, but resulting models are.
This is often the case, e.g. when an algorithm fits a majority population while ignoring or under-fitting minority populations.
License: LGPL (>= 3)
URL: https://github.com/mlr-org/mcboost
BugReports: https://github.com/mlr-org/mcboost/issues
Encoding: UTF-8
Depends:
R (>= 3.1.0)
Imports:
backports,
checkmate (>= 2.0.0),
data.table (>= 1.13.6),
mlr3 (>= 0.10),
mlr3misc (>= 0.8.0),
mlr3pipelines (>= 0.3.0),
R6 (>= 2.4.1),
rmarkdown,
rpart,
glmnet
Suggests:
curl,
lgr,
formattable,
tidyverse,
PracTools,
mlr3learners,
mlr3oml,
neuralnet,
paradox,
knitr,
ranger,
xgboost,
covr,
testthat (>= 3.1.0)
Roxygen: list(markdown = TRUE, r6 = TRUE)
RoxygenNote: 7.3.1
VignetteBuilder: knitr
Collate:
'AuditorFitters.R'
'MCBoost.R'
'PipelineMCBoost.R'
'PipeOpLearnerPred.R'
'PipeOpMCBoost.R'
'Predictor.R'
'ProbRange.R'
'helpers.R'
'zzz.R'