-
Notifications
You must be signed in to change notification settings - Fork 0
/
game_agent.py
executable file
·425 lines (325 loc) · 15.4 KB
/
game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""This file contains all the classes you must complete for this project.
You can use the test cases in agent_test.py to help during development, and
augment the test suite with your own test cases to further test your code.
You must test your agent's strength against a set of agents with known
relative strength using tournament.py and include the results in your report.
"""
import random
import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
class Timeout(Exception):
"""Subclass base exception for code clarity."""
pass
def heuristic_one(game, player):
"""The "heuristic_one" evaluation function outputs a score equal to
the difference in the number of moves available to the player and
two times the number of moves available to the opponent.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
return float(own_moves - (2 * opp_moves))
def heuristic_two(game, player):
"""The "heuristic_two" evaluation function outputs a score equal to
the difference in the number of moves available to the player and
the weighted number of moves available to the opponent. In this heuristic,
the additional weight applied is greater at the beginning of the game and
diminishes as the game progresses.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
max_blank_spaces = 46
blank_spaces = len(game.get_blank_spaces())
return float(own_moves - ((2 + (blank_spaces/max_blank_spaces)) * opp_moves))
def heuristic_three(game, player):
"""The "heuristic_three" evaluation function outputs a score equal to
the difference in the number of moves available to the two players in the
next two rounds, with weight added to the opponent's moves for more
aggressive game play. In this heuristic, the additional weight applied is
greater at the beginning of the game and diminishes as the game progresses.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
max_blank_spaces = 46
blank_spaces = len(game.get_blank_spaces())
for move in game.get_legal_moves(player):
own_moves += len(game.__get_moves__(move))
for move in game.get_legal_moves(game.get_opponent(player)):
opp_moves += len(game.__get_moves__(move))
return float(own_moves - ((2 + (blank_spaces/max_blank_spaces)) * opp_moves))
def custom_score(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
return heuristic_three(game, player)
raise NotImplementedError
class CustomPlayer:
"""Game-playing agent that chooses a move using your evaluation function
and a depth-limited minimax algorithm with alpha-beta pruning. You must
finish and test this player to make sure it properly uses minimax and
alpha-beta to return a good move before the search time limit expires.
Parameters
----------
search_depth : int (optional)
A strictly positive integer (i.e., 1, 2, 3,...) for the number of
layers in the game tree to explore for fixed-depth search. (i.e., a
depth of one (1) would only explore the immediate successors of the
current state.)
score_fn : callable (optional)
A function to use for heuristic evaluation of game states.
iterative : boolean (optional)
Flag indicating whether to perform fixed-depth search (False) or
iterative deepening search (True).
method : {'minimax', 'alphabeta'} (optional)
The name of the search method to use in get_move().
timeout : float (optional)
Time remaining (in milliseconds) when search is aborted. Should be a
positive value large enough to allow the function to return before the
timer expires.
"""
def __init__(self, search_depth=3, score_fn=custom_score,
iterative=True, method='minimax', timeout=15.):
self.search_depth = search_depth
self.iterative = iterative
self.score = score_fn
self.method = method
self.time_left = None
self.TIMER_THRESHOLD = timeout
self.count = 0
def get_move(self, game, legal_moves, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
This function must perform iterative deepening if self.iterative=True,
and it must use the search method (minimax or alphabeta) corresponding
to the self.method value.
**********************************************************************
NOTE: If time_left < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
legal_moves : list<(int, int)>
A list containing legal moves. Moves are encoded as tuples of pairs
of ints defining the next (row, col) for the agent to occupy.
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Perform any required initializations, including selecting an initial
# move from the game board (i.e., an opening book), or returning
# immediately if there are no legal moves
if not legal_moves:
return (-1, -1)
# Have something ready to be returned in case of timeout
current_score, current_move = float("-inf"), legal_moves[0]
# Just for clarity
argmax = max
try:
# The search method call (alpha beta or minimax) should happen in
# here in order to avoid timeout. The try/except block will
# automatically catch the exception raised by the search method
# when the timer gets close to expiring
if self.method == 'minimax':
if self.iterative is True:
self.search_depth = 1
while current_score is not float("inf"):
current_score, current_move = argmax(self.minimax(game, self.search_depth), (current_score, current_move))
self.search_depth += 1
else:
current_score, current_move = argmax(self.minimax(game, self.search_depth), (current_score, current_move))
elif self.method == 'alphabeta':
if self.iterative is True:
self.search_depth = 1
while current_score is not float("inf"):
current_score, current_move = argmax(self.alphabeta(game, self.search_depth), (current_score, current_move))
self.search_depth += 1
else:
current_score, current_move = argmax(self.alphabeta(game, self.search_depth), (current_score, current_move))
pass
except Timeout:
# Handle any actions required at timeout
# logging.warning('TIMEOUT - Result Returned: %s', current_move)
return current_move
pass
# Return the best move from the last completed search iteration
return current_move
raise NotImplementedError
def minimax(self, game, depth, maximizing_player=True):
"""Implement the minimax search algorithm as described in the lectures.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project unit tests; you cannot call any other
evaluation function directly.
"""
best_move = (-1, -1)
if depth == 0:
return self.score(game, self), best_move
if maximizing_player is True:
# Checking for time left here allow us to do it more often and avoid timeout issues
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
best_value = float("-inf")
for move in game.get_legal_moves():
value, _ = self.minimax(game.forecast_move(move), depth-1, False)
best_value, best_move = max((best_value, best_move), (value, move))
else:
# Checking for time left here allow us to do it more often and avoid timeout issues
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
best_value = float("inf")
for move in game.get_legal_moves():
value, _ = self.minimax(game.forecast_move(move), depth-1, True)
best_value, best_move = min((best_value, best_move), (value, move))
return best_value, best_move
raise NotImplementedError
def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf"), maximizing_player=True):
"""Implement minimax search with alpha-beta pruning as described in the
lectures.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project unit tests; you cannot call any other
evaluation function directly.
"""
# Function to find best score & move for Max player
def max_value(self, game, depth, alpha, beta):
# Checking for time left inside this function allow us to do it more often and avoid timeout issues
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if depth == 0:
return self.score(game, self), (-1, -1)
best_score, best_move = float("-inf"), (-1, -1)
for move in game.get_legal_moves():
score, _ = min_value(self, game.forecast_move(move), depth-1, alpha, beta)
best_score, best_move = max((best_score, best_move), (score, move))
if best_score >= beta:
return best_score, best_move
alpha = max(alpha, best_score)
return best_score, best_move
# Function to find best score & move for Min player
def min_value(self, game, depth, alpha, beta):
# Checking for time left inside this function allow us to do it more often and avoid timeout issues
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if depth == 0:
return self.score(game, self), (-1, -1)
best_score, best_move = float("inf"), (-1, -1)
for move in game.get_legal_moves():
score, _ = max_value(self, game.forecast_move(move), depth-1, alpha, beta)
best_score, best_move = min((best_score, best_move), (score, move))
if best_score <= alpha:
return best_score, best_move
beta = min(beta, best_score)
return best_score, best_move
# Start by calling the appropriate function based on the "maximizing_player" parameter
if maximizing_player is True:
return max_value(self, game, depth, alpha, beta)
else:
return min_value(self, game, depth, alpha, beta)
raise NotImplementedError