-
Notifications
You must be signed in to change notification settings - Fork 0
/
norm_plot.py
72 lines (57 loc) · 2.39 KB
/
norm_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2023
# Maximiliano Isi <[email protected]>
# Will M. Farr <[email protected]>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
import paths
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import arviz as az
import utils
import utils.plots
from utils.prior import draw_prior
sns.set(context='notebook', palette='colorblind', font_scale=1.5)
RNG = np.random.default_rng(12345)
###############################################################################
# LOAD FIT
###############################################################################
fit = az.from_netcdf(paths.result)
x = fit.posterior.vN.values
nhats = x.reshape(np.prod(x.shape[:2]), 3)
x = fit.posterior.vL.values
jhats = x.reshape(np.prod(x.shape[:2]), 3)
# ----------------------------------------------------------------------------
# draw vectors from prior
vprior = draw_prior(ndraw=len(jhats), rng=RNG)
###############################################################################
# PLOT
###############################################################################
lkws = dict(c='gray', ls='--')
with sns.axes_style("ticks"):
fig = plt.figure(figsize=utils.plots.figsize_column)
sns.kdeplot(np.linalg.norm(jhats, axis=1), label="$J$ posterior", lw=3)
sns.kdeplot(np.linalg.norm(nhats, axis=1), label="$N$ posterior", lw=3)
sns.kdeplot(np.linalg.norm(vprior, axis=1), label="prior", color='0.8',
lw=3, ls='--', zorder=-100);
plt.xlabel(r"$|\vec{v}_{J/N}|$");
plt.legend();
p = paths.figures / f"jn_norm.pdf"
fig.savefig(p, bbox_inches='tight')
print(f"Saved: {p}")