-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_macros.py
executable file
·96 lines (73 loc) · 3.09 KB
/
make_macros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2023
# Maximiliano Isi <[email protected]>
# Will M. Farr <[email protected]>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
import paths
import pickle as pkl
import arviz as az
import numpy as np
import utils
from utils.prior import draw_prior
import utils.inference as ui
RNG = np.random.default_rng(12345)
macros = []
###############################################################################
# INDIVIDUAL EVENTS
###############################################################################
fname = paths.vectors_bbh
with open(fname, 'rb') as f:
vector_dict = pkl.load(f)
print(f"Loaded: {fname}")
Nevents = len(vector_dict['n'])
macros.append("\\renewcommand{\\Nevents}{%i\\xspace}" % Nevents)
###############################################################################
# HIERARCHICAL FIT
###############################################################################
fit = az.from_netcdf(paths.result)
x = fit.posterior.vN.values
nhats = x.reshape(np.prod(x.shape[:2]), 3)
x = fit.posterior.vL.values
jhats = x.reshape(np.prod(x.shape[:2]), 3)
# vprior = draw_prior(ndraw=100000, rng=RNG)
std_prior = 0.3089
vdict = {'n': nhats, 'j': jhats}
for k, vs in vdict.items():
std = np.std(vs, axis=0)
x = (std - std_prior)/std_prior
for i, xi in zip('xyz', x):
macros.append("\\renewcommand{\\varimp%s%s}{%.0f\\%%\\xspace}"
% (k.upper(),i,np.abs(xi)*100))
#vdict['prior'] = draw_prior(ndraw=100000, rng=RNG)
for k, vs in vdict.items():
cl = np.ceil(ui.cl_origin(vs)*100)
macros.append("\\renewcommand{\\cl%s}{%.0f\\%%\\xspace}" % (k.title(), cl))
###############################################################################
# VALIDATION RUNS
###############################################################################
macros.append(r"\renewcommand{\Nitersel}{%i\xspace}" % (utils.NITER_SEL-1))
macros.append(r"\renewcommand{\Nstartsel}{%i\xspace}" % utils.NSTART_SEL)
nmaxsel = utils.NSTART_SEL * 2**(utils.NITER_SEL - 1)
macros.append(r"\renewcommand{\Nmaxsel}{%i\xspace}" % nmaxsel)
###############################################################################
# SAVE MACROS
###############################################################################
with open(paths.macros, 'w') as f:
f.write("\n".join(macros))
print(f"Saved: {paths.macros}")