-
Notifications
You must be signed in to change notification settings - Fork 0
/
density_3d_plot.py
90 lines (70 loc) · 2.95 KB
/
density_3d_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2023
# Maximiliano Isi <[email protected]>
# Will M. Farr <[email protected]>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
import paths
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import arviz as az
from scipy.stats import gaussian_kde
import utils
from utils.prior import draw_prior
sns.set(context='notebook', palette='colorblind')
RNG = np.random.default_rng(12345)
###############################################################################
# LOAD FIT
###############################################################################
fit = az.from_netcdf(paths.result)
x = fit.posterior.vN.values
nhats = x.reshape(np.prod(x.shape[:2]), 3)
x = fit.posterior.vL.values
jhats = x.reshape(np.prod(x.shape[:2]), 3)
# ----------------------------------------------------------------------------
# draw vectors from prior
vprior = draw_prior(ndraw=len(jhats), rng=RNG)
vdict = {'n': nhats, 'j': jhats, 'prior': vprior}
###############################################################################
# PLOT
###############################################################################
lkws = dict(c='gray', ls='--')
for k, vs in vdict.items():
# KDE vectors to later color points by density
x ,y ,z = vs.T
kde = gaussian_kde([x, y, z])
vcs = kde([x, y, z])
with sns.axes_style("whitegrid", {"grid.linestyle": ':'}):
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot3D([0, 0], [0,0], [-1,1], **lkws)
ax.plot3D([0, 0], [-1,1], [0,0], **lkws)
ax.plot3D([-1,1], [0, 0], [0,0], **lkws)
ax.scatter(x, y, z, c=vcs, cmap='viridis', alpha=0.3, marker='.', lw=0,
rasterized=True)
ax.scatter([0], [0], [0], c='k', marker='P', s=40)
for i in 'xyz':
getattr(ax, f'set_{i}lim')(-1,1)
getattr(ax, f'set_{i}ticks')([-1,0,1])
getattr(ax, f'set_{i}label')(r"$%s$" % i, labelpad=-1)
ax.set_zlabel("$z$", labelpad=-8)
ax.tick_params(axis='both', which='major', pad=-1)
p = paths.figures / f"density_3d_{k}.pdf"
fig.savefig(p, bbox_inches='tight', dpi=600)
print(f"Saved: {p}")