diff --git a/src/FMM/README.md b/src/FMM/README.md index 5cdba7f..23ebe94 100644 --- a/src/FMM/README.md +++ b/src/FMM/README.md @@ -4,11 +4,7 @@ Repository that contain End-2-End pipeline to perform QUBIC frequency map-making # Description -First step is compute frequency observations based on 3 way to do it : - -* Usual map-making by deconvolving multiple peaks (large memory requirement) -* Fake frequency map-making using PySM python package using instrumental noise description -* Spectrum-based map-making assuming perfect or gaussian foregrounds (idealistic model) +We reconstruct frequency maps based on a forward modeling of the QUBIC instrument. Maps are estimated using a PCG, then the auto and cross power spectra are estimated to perform finally cosmological analysis. # Run diff --git a/src/FMM/mapmaking_old/frequency_acquisition.py b/src/FMM/mapmaking_old/frequency_acquisition.py deleted file mode 100644 index 2adbb47..0000000 --- a/src/FMM/mapmaking_old/frequency_acquisition.py +++ /dev/null @@ -1,2187 +0,0 @@ -######################################################################################################################### -######################################################################################################################### -######## ######## -######## This file contain the acquisition models to perform the frequency map-making for QUBIC. We can ######## -######## choose to simulate one FP of the instrument, two FP or the WideBand instrument. ######## -######## ######## -######################################################################################################################### -######################################################################################################################### - - -import os -import sys - -# General stuff -import healpy as hp -import matplotlib.pyplot as plt -import numpy as np -import pysm3 - -# QUBIC stuff -import qubic -from qubic.data import PATH -from qubic.io import read_map -from qubic.samplings import create_random_pointings, get_pointing -from qubic.scene import QubicScene -from qubicpack.utilities import Qubic_DataDir - -sys.path.append(os.path.dirname(os.getcwd())) -path = os.path.dirname(os.getcwd()) + "/data/" -import gc -import time -import warnings - -warnings.filterwarnings("ignore") - -import pickle -from importlib import reload - -# FG-Buster packages -import fgb.component_model as c -import fgb.mixing_matrix as mm -import mapmaking.instrument as instr -import pysm3.units as u -from pyoperators import * - -# PyOperators stuff -from pysimulators import * -from pysimulators.interfaces.healpy import HealpixConvolutionGaussianOperator -from pysm3 import utils -from scipy.optimize import minimize - - -def get_ultrawideband_config(): - - nu_up = 247.5 - nu_down = 131.25 - nu_ave = np.mean(np.array([nu_up, nu_down])) - delta = nu_up - nu_ave - - return nu_ave, 2 * delta / nu_ave - - -def find_folder_recursively(folder_name, start_path=os.path.expanduser("~/Desktop")): - for root, dirs, files in os.walk(start_path): - if folder_name in dirs: - return os.path.join(root, folder_name) - raise FileNotFoundError(f"{folder_name} not found.") - - -import pyoperators -from pyoperators import * - -__all__ = [ - "QubicAcquisition", - "PlanckAcquisition", - "QubicPlanckAcquisition", - "QubicPolyAcquisition", - "QubicMultiBandAcquisition", - "QubicPlanckMultiBandAcquisition", - "QubicAcquisitionTwoBands", - "QubicMultiBandAcquisitionTwoBands", - "QubicIntegrated", - "QubicTwoBands", - "QubicWideBand", - "QubicOtherIntegrated", - "PlanckAcquisitionComponentsMapMaking", - "QubicPlanckAcquisitionComponentsMapMaking", - "QubicIntegratedComponentsMapMaking", - "QubicWideBandComponentsMapMaking", - "QubicTwoBandsComponentsMapMaking", -] - - -def create_array(name, nus, nside): - - if name == "noise": - shape = (2, 12 * nside**2, 3) - else: - shape = len(nus) - pkl_file = open(path + "AllDataSet_Components_MapMaking.pkl", "rb") - dataset = pickle.load(pkl_file) - - myarray = np.zeros(shape) - - for ii, i in enumerate(nus): - myarray[ii] = dataset[name + str(i)] - - return myarray - - -def get_preconditioner(cov): - if cov is not None: - cov_inv = 1 / cov - cov_inv[np.isinf(cov_inv)] = 0.0 - preconditioner = DiagonalOperator(cov_inv, broadcast="rightward") - else: - preconditioner = None - return preconditioner - - -def arcmin2rad(arcmin): - return arcmin * 0.000290888 - - -def give_cl_cmb(r=0, Alens=1.0): - power_spectrum = hp.read_cl(path + "Cls_Planck2018_lensed_scalar.fits")[:, :4000] - if Alens != 1.0: - power_spectrum[2] *= Alens - if r: - power_spectrum += ( - r - * hp.read_cl(path + "Cls_Planck2018_unlensed_scalar_and_tensor_r1.fits")[ - :, :4000 - ] - ) - return power_spectrum - - -def rad2arcmin(rad): - return rad / 0.000290888 - - -def circular_mask(nside, center, radius): - lon = center[0] - lat = center[1] - vec = hp.ang2vec(lon, lat, lonlat=True) - disc = hp.query_disc(nside, vec, radius=np.deg2rad(radius)) - m = np.zeros(hp.nside2npix(nside)) - m[disc] = 1 - return np.array(m, dtype=bool) - - -def compute_fwhm_to_convolve(allres, target): - s = np.sqrt(target**2 - allres**2) - # if s == np.nan: - # s = 0 - return s - - -def find_co(comp, nus_edge): - return np.sum(nus_edge < comp[-1].nu) - 1 - - -def parse_addition_operator(operator): - - if isinstance(operator, AdditionOperator): - for op in operator.operands: - parse_addition_operator(op) - - else: - parse_composition_operator(operator) - return operator - - -def parse_composition_operator(operator): - for i, op in enumerate(operator.operands): - if isinstance(op, HealpixConvolutionGaussianOperator): - operator.operands[i] = HealpixConvolutionGaussianOperator(fwhm=10) - - -def insert_inside_list(operator, element, position): - - list = operator.operands - list.insert(position, element) - return CompositionOperator(list) - - -def delete_inside_list(operator, position): - - list = operator.operands - list.pop(position) - return CompositionOperator(list) - - -def mychi2(beta, obj, Hqubic, data, solution, nsamples): - - H_for_beta = obj.get_operator(beta, convolution=False, H_qubic=Hqubic) - fakedata = H_for_beta(solution) - fakedata_norm = obj.normalize(fakedata, nsamples) - print(beta) - return np.sum((fakedata_norm - data) ** 2) - - -def fit_beta(tod, nsamples, obj, H_qubic, outputs): - - tod_norm = obj.normalize(tod, nsamples) - r = minimize( - mychi2, - method="TNC", - tol=1e-15, - x0=np.array([1.0]), - args=(obj, H_qubic, tod_norm, outputs, nsamples), - ) - - return r.x - - -class QubicAcquisition(Acquisition): - """ - The QubicAcquisition class, which combines the instrument, sampling and - scene models. - """ - - def __init__(self, instrument, sampling, scene, d): - """ - acq = QubicAcquisition(instrument, sampling, scene, d) - Parameters - ---------- - instrument : QubicInstrument, optional - The QubicInstrument instance. - sampling : pointing - Pointing obtained with get_pointing(). - scene : QubicScene, optional - The discretized observed scene (the sky). - d : dictionary with lot of parameters: - block : tuple of slices, optional - Partition of the samplings. - effective_duration : float, optional - If not None, the noise properties are rescaled so that this - acquisition has an effective duration equal to the specified value, - in years. - photon_noise : boolean, optional - If true, the photon noise contribution is included. - max_nbytes : int or None, optional - Maximum number of bytes to be allocated for the acquisition's - operator. - nprocs_instrument : int, optional - For a given sampling slice, number of procs dedicated to - the instrument. - nprocs_sampling : int, optional - For a given detector slice, number of procs dedicated to - the sampling. - comm : mpi4py.MPI.Comm, optional - The acquisition's MPI communicator. Note that it is transformed - into a 2d cartesian communicator before being stored as the 'comm' - attribute. The following relationship must hold: - comm.size = nprocs_instrument * nprocs_sampling - psd : array-like, optional - The one-sided or two-sided power spectrum density - [signal unit/sqrt Hz]. - bandwidth : float, optional - The PSD frequency increment [Hz]. - twosided : boolean, optional - Whether or not the input psd is one-sided (only positive - frequencies) or two-sided (positive and negative frequencies). - sigma : float - Standard deviation of the white noise component. - """ - block = d["block"] - effective_duration = d["effective_duration"] - photon_noise = d["photon_noise"] - max_nbytes = d["max_nbytes"] - nprocs_instrument = d["nprocs_instrument"] - nprocs_sampling = d["nprocs_sampling"] - comm = d["comm"] - psd = d["psd"] - bandwidth = d["bandwidth"] - twosided = d["twosided"] - sigma = d["sigma"] - - Acquisition.__init__( - self, - instrument, - sampling, - scene, - block=block, - max_nbytes=max_nbytes, - nprocs_instrument=nprocs_instrument, - nprocs_sampling=nprocs_sampling, - comm=comm, - ) - self.photon_noise = bool(photon_noise) - self.effective_duration = effective_duration - self.bandwidth = bandwidth - self.psd = psd - self.twosided = twosided - self.sigma = sigma - self.forced_sigma = None - - # print('Acq -> ', self.comm) - - def get_coverage(self): - """ - Return the acquisition scene coverage as given by H.T(1), normalized - so that its integral over the sky is the number of detectors times - the duration of the acquisition. - """ - H = self.get_operator() - out = H.T(np.ones((len(self.instrument), len(self.sampling)))) - if self.scene.kind != "I": - out = out[..., 0].copy() # to avoid keeping QU in memory - ndetectors = self.comm.allreduce(len(self.instrument)) - nsamplings = self.sampling.comm.allreduce(len(self.sampling)) - # nsamplings = self.comm.allreduce(len(self.sampling)) - out *= ndetectors * nsamplings * self.sampling.period / np.sum(out) - return out - - def get_hitmap(self, nside=None): - """ - Return a healpy map whose values are the number of times a pointing - hits the pixel. - """ - if nside is None: - nside = self.scene.nside - ipixel = self.sampling.healpix(nside) - npixel = 12 * nside**2 - hit = np.histogram(ipixel, bins=npixel, range=(0, npixel))[0] - # self.sampling.comm.Allreduce(MPI.IN_PLACE, as_mpi(hit), op=MPI.SUM) - self.comm.Allreduce(MPI.IN_PLACE, as_mpi(hit), op=MPI.SUM) - return hit - - def get_noise(self, det_noise, photon_noise, seed=None, out=None): - - np.random.seed(seed) - out = self.instrument.get_noise( - self.sampling, self.scene, det_noise, photon_noise, out=out - ) - if self.effective_duration is not None: - # nsamplings = self.comm.allreduce(len(self.sampling)) - nsamplings = self.sampling.comm.allreduce(len(self.sampling)) - - out *= np.sqrt( - nsamplings * self.sampling.period / (self.effective_duration * 31557600) - ) - return out - - get_noise.__doc__ = Acquisition.get_noise.__doc__ - - def get_aperture_integration_operator(self): - """ - Integrate flux density in the telescope aperture. - Convert signal from W / m^2 / Hz into W / Hz. - """ - return self.instrument.get_aperture_integration_operator() - - def get_convolution_peak_operator(self, **keywords): - """ - Return an operator that convolves the Healpix sky by the gaussian - kernel that, if used in conjonction with the peak sampling operator, - best approximates the synthetic beam. - """ - return self.instrument.get_convolution_peak_operator(**keywords) - - def get_detector_integration_operator(self): - """ - Integrate flux density in detector solid angles. - Convert W / sr into W. - """ - return self.instrument.get_detector_integration_operator() - - def get_detector_response_operator(self): - """ - Return the operator for the bolometer responses. - """ - return BlockDiagonalOperator( - [ - self.instrument.get_detector_response_operator(self.sampling[b]) - for b in self.block - ], - axisin=1, - ) - - def get_distribution_operator(self): - """ - Return the MPI distribution operator. - """ - return MPIDistributionIdentityOperator(self.comm) - - def get_filter_operator(self): - """ - Return the filter operator. - Convert units from W/Hz to W. - """ - return self.instrument.get_filter_operator() - - def get_hwp_operator(self): - """ - Return the operator for the bolometer responses. - """ - return BlockDiagonalOperator( - [ - self.instrument.get_hwp_operator(self.sampling[b], self.scene) - for b in self.block - ], - axisin=1, - ) - - def get_diag_invntt_operator(self): - - print("Use diagonal noise covariance matrix") - - sigma_detector = self.instrument.detector.nep / np.sqrt( - 2 * self.sampling.period - ) - if self.photon_noise: - sigma_photon = self.instrument._get_noise_photon_nep(self.scene) / np.sqrt( - 2 * self.sampling.period - ) - else: - sigma_photon = 0 - - out = DiagonalOperator( - 1 / (sigma_detector**2 + sigma_photon**2), - broadcast="rightward", - shapein=(len(self.instrument), len(self.sampling)), - ) - if self.effective_duration is not None: - nsamplings = self.comm.allreduce(len(self.sampling)) - out /= ( - nsamplings * self.sampling.period / (self.effective_duration * 31557600) - ) - return out - - def get_invntt_operator(self, det_noise, photon_noise): - """ - Return the inverse time-time noise correlation matrix as an Operator. - - The input Power Spectrum Density can either be fully specified by using - the 'bandwidth' and 'psd' keywords, or by providing the parameters of - the gaussian distribution: - psd = sigma**2 * (1 + (fknee/f)**fslope) / B - where B is the sampling bandwidth equal to sampling_frequency / N. - - Parameters - ---------- - sampling : Sampling - The temporal sampling. - psd : array-like, optional - The one-sided or two-sided power spectrum density - [signal unit/sqrt Hz]. - bandwidth : float, optional - The PSD frequency increment [Hz]. - twosided : boolean, optional - Whether or not the input psd is one-sided (only positive - frequencies) or two-sided (positive and negative frequencies). - sigma : float - Standard deviation of the white noise component. - sampling_frequency : float - The sampling frequency [Hz]. - fftw_flag : string, optional - The flags FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT and - FFTW_EXHAUSTIVE can be used to describe the increasing amount of - effort spent during the planning stage to create the fastest - possible transform. Usually, FFTW_MEASURE is a good compromise - and is the default. - nthreads : int, optional - Tells how many threads to use when invoking FFTW or MKL. Default is - the number of cores. - - """ - - fftw_flag = "FFTW_MEASURE" - nthreads = None - - # if self.bandwidth is None or self.psd is None: - if ( - self.bandwidth is None - and self.psd is not None - or self.bandwidth is not None - and self.psd is None - ): - raise ValueError("The bandwidth or the PSD is not specified.") - - # Get sigma in Watt - self.sigma = 0 - if det_noise is not None: - self.sigma = self.instrument.detector.nep / np.sqrt( - 2 * self.sampling.period - ) - # print(self.sigma) - if photon_noise: - sigma_photon = self.instrument._get_noise_photon_nep(self.scene) / np.sqrt( - 2 * self.sampling.period - ) - self.sigma = np.sqrt(self.sigma**2 + sigma_photon**2) - # print(sigma_photon[0]) - else: - pass - # sigma_photon = 0 - - if self.bandwidth is None and self.psd is None and self.sigma is None: - raise ValueError("The noise model is not specified.") - - # print('In acquisition.py: self.forced_sigma={}'.format(self.forced_sigma)) - # print('and self.sigma is:{}'.format(self.sigma)) - if self.forced_sigma is None: - pass # print('Using theoretical TES noises') - else: - # print('Using self.forced_sigma as TES noises') - self.sigma = self.forced_sigma.copy() - - shapein = (len(self.instrument), len(self.sampling)) - - if self.bandwidth is None and self.instrument.detector.fknee == 0: - # print('diagonal case') - - out = DiagonalOperator( - 1 / self.sigma**2, - broadcast="rightward", - shapein=(len(self.instrument), len(self.sampling)), - ) - # print(out.shape) - # print(out) - - if self.effective_duration is not None: - # nsamplings = self.comm.allreduce(len(self.sampling)) - nsamplings = self.sampling.comm.allreduce(len(self.sampling)) - out /= ( - nsamplings - * self.sampling.period - / (self.effective_duration * 31557600) - ) - return out - - sampling_frequency = 1 / self.sampling.period - - nsamples_max = len(self.sampling) - fftsize = 2 - while fftsize < nsamples_max: - fftsize *= 2 - - new_bandwidth = sampling_frequency / fftsize - if self.bandwidth is not None and self.psd is not None: - if self.twosided: - self.psd = _fold_psd(self.psd) - f = np.arange(fftsize // 2 + 1, dtype=float) * new_bandwidth - p = _unfold_psd(_logloginterp_psd(f, self.bandwidth, self.psd)) - else: - p = _gaussian_psd_1f( - fftsize, - sampling_frequency, - self.sigma, - self.instrument.detector.fknee, - self.instrument.detector.fslope, - twosided=True, - ) - p[..., 0] = p[..., 1] - invntt = _psd2invntt( - p, new_bandwidth, self.instrument.detector.ncorr, fftw_flag=fftw_flag - ) - - print("non diagonal case") - if self.effective_duration is not None: - nsamplings = self.comm.allreduce(len(self.sampling)) - invntt /= ( - nsamplings * self.sampling.period / (self.effective_duration * 31557600) - ) - - return SymmetricBandToeplitzOperator( - shapein, invntt, fftw_flag=fftw_flag, nthreads=nthreads - ) - - get_invntt_operator.__doc__ = Acquisition.get_invntt_operator.__doc__ - - def get_unit_conversion_operator(self): - """ - Convert sky temperature into W / m^2 / Hz. - If the scene has been initialised with the 'absolute' keyword, the - scene is assumed to include the CMB background and the fluctuations - (in Kelvin) and the operator follows the non-linear Planck law. - Otherwise, the scene only includes the fluctuations (in microKelvin) - and the operator is linear (i.e. the output also corresponds to power - fluctuations). - """ - nu = self.instrument.filter.nu - return self.scene.get_unit_conversion_operator(nu) - - def get_operator(self): - """ - Return the operator of the acquisition. Note that the operator is only - linear if the scene temperature is differential (absolute=False). - """ - distribution = self.get_distribution_operator() - temp = self.get_unit_conversion_operator() - aperture = self.get_aperture_integration_operator() - filter = self.get_filter_operator() - projection = self.get_projection_operator() - hwp = self.get_hwp_operator() - polarizer = self.get_polarizer_operator() - integ = self.get_detector_integration_operator() - trans_inst = self.instrument.get_transmission_operator() - trans_atm = self.scene.atmosphere.transmission - response = self.get_detector_response_operator() - - with rule_manager(inplace=True): - H = CompositionOperator( - [ - response, - trans_inst, - integ, - polarizer, - hwp * projection, - filter, - aperture, - trans_atm, - temp, - distribution, - ] - ) - if self.scene == "QU": - H = self.get_subtract_grid_operator()(H) - return H - - def get_polarizer_operator(self): - """ - Return operator for the polarizer grid. - """ - return BlockDiagonalOperator( - [ - self.instrument.get_polarizer_operator(self.sampling[b], self.scene) - for b in self.block - ], - axisin=1, - ) - - def get_projection_operator(self, verbose=True): - """ - Return the projection operator for the peak sampling. - Convert units from W to W/sr. - Parameters - ---------- - verbose : bool, optional - If true, display information about the memory allocation. - """ - f = self.instrument.get_projection_operator - if len(self.block) == 1: - return BlockColumnOperator( - [f(self.sampling[b], self.scene, verbose=verbose) for b in self.block], - axisout=1, - ) - - # XXX HACK - def callback(i): - p = f(self.sampling[self.block[i]], self.scene, verbose=False) - return p - - shapeouts = [ - (len(self.instrument), s.stop - s.start) + self.scene.shape[1:] - for s in self.block - ] - proxies = proxy_group(len(self.block), callback, shapeouts=shapeouts) - return BlockColumnOperator(proxies, axisout=1) - - def get_add_grids_operator(self): - """Return operator to add signal from detector pairs.""" - nd = len(self.instrument) - if nd % 2 != 0: - raise ValueError("Odd number of detectors.") - partitionin = 2 * (len(self.instrument) // 2,) - return BlockRowOperator([I, I], axisin=0, partitionin=partitionin) - - def get_subtract_grids_operator(self): - """Return operator to subtract signal from detector pairs.""" - nd = len(self.instrument) - if nd % 2 != 0: - raise ValueError("Odd number of detectors.") - partitionin = 2 * (len(self.instrument) // 2,) - return BlockRowOperator([I, -I], axisin=0, partitionin=partitionin) - - def get_observation(self, map, convolution=True, noiseless=False): - """ - tod = map2tod(acquisition, map) - tod, convolved_map = map2tod(acquisition, map, convolution=True) - Parameters - ---------- - map : I, QU or IQU maps - Temperature, QU or IQU maps of shapes npix, (npix, 2), (npix, 3) - with npix = 12 * nside**2 - noiseless : boolean, optional - If True, no noise is added to the observation. - convolution : boolean, optional - Set to True to convolve the input map by a gaussian and return it. - Returns - ------- - tod : array - The Time-Ordered-Data of shape (ndetectors, ntimes). - convolved_map : array, optional - The convolved map, if the convolution keyword is set. - """ - if convolution: - convolution = self.get_convolution_peak_operator() - map = convolution(map) - - H = self.get_operator() - tod = H(map) - - if not noiseless: - tod += self.get_noise() - - if convolution: - return tod, map - - return tod - - def get_preconditioner(self, cov): - if cov is not None: - cov_inv = 1 / cov - cov_inv[np.isinf(cov_inv)] = 0.0 - preconditioner = DiagonalOperator(cov_inv, broadcast="rightward") - else: - preconditioner = None - return preconditioner - - -class PlanckAcquisition: - - def __init__(self, band, scene): - if band not in (30, 44, 70, 143, 217, 353): - raise ValueError("Invalid band '{}'.".format(band)) - self.scene = scene - self.band = band - self.nside = self.scene.nside - - if band == 30: - filename = "Variance_Planck30GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 44: - filename = "Variance_Planck44GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 70: - filename = "Variance_Planck70GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 143: - filename = "Variance_Planck143GHz_Kcmb2_ns256.fits" - self.var = np.array(FitsArray(PATH + filename)) - sigma = 1e6 * np.sqrt(self.var) - elif band == 217: - filename = "Variance_Planck217GHz_Kcmb2_ns256.fits" - self.var = np.array(FitsArray(PATH + filename)) - sigma = 1e6 * np.sqrt(self.var) - else: - filename = "Variance_Planck353GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - - if scene.kind == "I": - sigma = sigma[:, 0] - elif scene.kind == "QU": - sigma = sigma[:, :2] - if self.nside != 256: - sigma = np.array(hp.ud_grade(sigma.T, self.nside, power=2), copy=False).T - self.sigma = sigma - - def get_operator(self, nintegr=1): - Hp = DiagonalOperator( - np.ones((12 * self.nside**2, 3)), - broadcast="rightward", - shapein=self.scene.shape, - shapeout=np.ones((12 * self.nside**2, 3)).ravel().shape, - ) - - if nintegr == 1: - return Hp - - def get_invntt_operator(self, beam_correction=0, mask=None, seenpix=None): - - if beam_correction != 0: - factor = ( - 4 - * np.pi - * ( - np.rad2deg(beam_correction) - / 2.35 - / np.degrees(hp.nside2resol(self.scene.nside)) - ) - ** 2 - ) - # print(f'corrected by {factor}') - varnew = ( - hp.smoothing(self.var.T, fwhm=beam_correction / np.sqrt(2)) / factor - ) - self.sigma = 1e6 * np.sqrt(varnew.T) - - if mask is not None: - for i in range(3): - self.sigma[:, i] /= mask.copy() - # print(self.sigma[seenpix, i]) - # print(len(mask[seenpix]), mask[seenpix]) - # if seenpix is not None: - # myweight = 1 / (self.sigma[seenpix] ** 2) - # else: - myweight = 1 / (self.sigma**2) - - return DiagonalOperator(myweight, broadcast="leftward", shapein=myweight.shape) - - def get_noise(self, seed): - state = np.random.get_state() - np.random.seed(seed) - out = ( - np.random.standard_normal(np.ones((12 * self.nside**2, 3)).shape) - * self.sigma - ) - np.random.set_state(state) - return out - - def get_map(self, nu_min, nu_max, Nintegr, sky_config, d, fwhm=None): - - print(f"Integration from {nu_min:.2f} to {nu_max:.2f} GHz with {Nintegr} steps") - obj = QubicIntegrated(d, Nsub=Nintegr, Nrec=Nintegr) - if Nintegr == 1: - allnus = np.array([np.mean([nu_min, nu_max])]) - else: - allnus = np.linspace(nu_min, nu_max, Nintegr) - m = obj.get_PySM_maps(sky_config, nus=allnus) - - if fwhm is None: - fwhm = [0] * Nintegr - - for i in range(Nintegr): - C = HealpixConvolutionGaussianOperator(fwhm=fwhm) - m[i] = C(m[i]) - - return np.mean(m, axis=0) - - -class QubicPolyAcquisition: - def __init__(self, multiinstrument, sampling, scene, d): - """ - acq = QubicPolyAcquisition(QubicMultibandInstrument, sampling, scene) - Parameters - ---------- - multiinstrument : QubicMultibandInstrument - The sub-frequencies are set there - sampling : - QubicSampling instance - scene : - QubicScene instance - For other parameters see documentation for the QubicAcquisition class - """ - - weights = d["weights"] - - # self.warnings(d) - if d["MultiBand"] and d["nf_sub"] > 1: - self.subacqs = [ - QubicAcquisition(multiinstrument[i], sampling, scene, d) - for i in range(len(multiinstrument)) - ] - else: - raise ValueError( - "If you do not use a multiband instrument," - "you should use the QubicAcquisition class" - "which is done for the monochromatic case." - ) - for a in self[1:]: - a.comm = self[0].comm - self.scene = scene - self.d = d - if weights is None: - self.weights = np.ones(len(self)) # / len(self) - else: - self.weights = weights - - def __getitem__(self, i): - return self.subacqs[i] - - def __len__(self): - return len(self.subacqs) - - def warnings(self, d): - """ - This method prevent to you that beam is not a good - approximation in the 220 GHz band. - Also can be used to add new warnings when acquisition is created in - specific configuration. - """ - - if d["filter_nu"] == 220e9: - if d["beam_shape"] == "gaussian": - warnings.warn( - "The nu dependency of the gausian beam FWHM " - "is not a good approximation in the 220 GHz band." - ) - elif d["beam_shape"] == "fitted_beam": - warnings.warn( - "Beam and solid angle frequency dependence implementation " - "in the 220 GHz band for the fitted beam does not correctly describe " - "the true behavior" - ) - - def get_coverage(self): - """ - Return an array of monochromatic coverage maps, one for each of subacquisitions - """ - if len(self) == 1: - return self.subacqs[0].get_coverage() - return np.array([self.subacqs[i].get_coverage() for i in range(len(self))]) - - def get_coverage_mask(self, coverages, covlim=0.2): - """ - Return a healpix boolean map with True on the pixels where ALL the - subcoverages are above covlim * subcoverage.max() - """ - if coverages.shape[0] != len(self): - raise ValueError( - "Use QubicMultibandAcquisition.get_coverage method to create input" - ) - if len(self) == 1: - cov = coverages - return cov > covlim * np.max(cov) - observed = [ - (coverages[i] > covlim * np.max(coverages[i])) for i in range(len(self)) - ] - obs = reduce(np.logical_and, tuple(observed[i] for i in range(len(self)))) - return obs - - def _get_average_instrument_acq(self): - """ - Create and return a QubicAcquisition instance of a monochromatic - instrument with frequency correspondent to the mean of the - frequency range. - """ - if len(self) == 1: - return self[0] - q0 = self[0].instrument - nu_min = q0.filter.nu - nu_max = self[-1].instrument.filter.nu - nep = q0.detector.nep - fknee = q0.detector.fknee - fslope = q0.detector.fslope - - d1 = self.d.copy() - d1["filter_nu"] = (nu_max + nu_min) / 2.0 - d1["filter_relative_bandwidth"] = (nu_max - nu_min) / ((nu_max + nu_min) / 2.0) - d1["detector_nep"] = nep - d1["detector_fknee"] = fknee - d1["detector_fslope"] = fslope - - q = qubic.QubicInstrument(d1, FRBW=self[0].instrument.FRBW) - q.detector = self[0].instrument.detector - s_ = self[0].sampling - nsamplings = self[0].comm.allreduce(len(s_)) - - d1["random_pointing"] = True - d1["sweeping_pointing"] = False - d1["repeat_pointing"] = False - d1["RA_center"] = 0.0 - d1["DEC_center"] = 0.0 - d1["npointings"] = nsamplings - d1["dtheta"] = 10.0 - d1["period"] = s_.period - - s = get_pointing(d1) - # s = create_random_pointings([0., 0.], nsamplings, 10., period=s_.period) - a = QubicAcquisition(q, s, self[0].scene, d1) - return a - - def get_noise(self): - a = self._get_average_instrument_acq() - return a.get_noise() - - def _get_array_of_operators(self): - return [a.get_operator() * w for a, w in zip(self, self.weights)] - - def get_operator_to_make_TOD(self): - """ - Return a BlockRowOperator of subacquisition operators - In polychromatic mode it is only applied to produce the TOD - To reconstruct maps one should use the get_operator function - """ - if len(self) == 1: - return self.get_operator() - op = self._get_array_of_operators() - return BlockRowOperator(op, new_axisin=0) - - def get_operator(self): - """ - Return an sum of operators for subacquisitions - """ - if len(self) == 1: - return self[0].get_operator() - op = np.array(self._get_array_of_operators()) - return np.sum(op, axis=0) - - def get_invntt_operator(self): - """ - Return the inverse noise covariance matrix as operator - """ - return self[0].get_invntt_operator() - - -class QubicPlanckMultiBandAcquisition: - - def __init__(self, qubic, planck): - - self.qubic = qubic - # self.Nsamples = self.qubic.Nsamples - # self.Ndets = self.qubic.Ndets - self.type = self.qubic.kind - self.Nsub = self.qubic.Nsub - self.Nrec = self.qubic.Nrec - self.scene = self.qubic.scene - # self.final_fwhm = self.qubic.final_fwhm - self.planck = planck - self.nside = self.scene.nside - - # self.nueff = self.qubic.nueff - self.allnus = self.qubic.allnus - - def sed_for_scaling(self, nus, comp, beta): - sed = mm.MixingMatrix(comp).evaluator(nus)(beta) - return sed - - def _loop(self, irec): - - pl = [] - for jrec in range(int(len(self.nueff))): - print(irec, jrec) - pl += [self._planck_correction(irec, jrec)] - - return pl - - def _planck_correction(self, indice1, indice2): - - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), (12 * self.qubic.scene.nside**2 * 3) - ) - if indice1 == indice2: - return R_planck - else: - return R_planck * 0 - - def _add_planck_contribution(self, list, ifp): - - for irec in range(int(len(self.nueff) / 2)): - for jrec in range(int(len(self.nueff))): - if ifp == 0: - f = 0 - else: - f = int(len(self.nueff) / 2) - if irec + f == jrec: - list += [R_planck] - else: - list += [0 * R_planck] - - return list - - def get_operator(self, convolution=False, myfwhm=None): - - if self.type == "QubicIntegrated": # Classic intrument - - # Get QUBIC operator - H_qubic = self.qubic.get_operator(convolution=convolution, myfwhm=myfwhm) - R_qubic = ReshapeOperator( - H_qubic.operands[0].shapeout, H_qubic.operands[0].shape[0] - ) - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), - (12 * self.qubic.scene.nside**2 * 3), - ) - - # Create an empty list to hold operators - full_operator = [] - - if self.Nrec == 1: - Operator = [R_qubic(H_qubic), R_planck] - return BlockColumnOperator(Operator, axisout=0) - - else: - - for irec in range(self.Nrec): - Operator = [R_qubic(H_qubic.operands[irec])] - for jrec in range(self.Nrec): - if irec == jrec: - Operator += [R_planck] - else: - Operator += [R_planck * 0] - - full_operator += [BlockColumnOperator(Operator, axisout=0)] - - return BlockRowOperator(full_operator, new_axisin=0) - - elif self.type == "Wide": # WideBand intrument - - # Get QUBIC operator - H_qubic = self.qubic.get_operator(convolution=convolution, myfwhm=myfwhm) - R_qubic = ReshapeOperator( - H_qubic.operands[0].shapeout, H_qubic.operands[0].shape[0] - ) - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), - (12 * self.qubic.scene.nside**2 * 3), - ) - - if self.Nrec == 1: - operator = [R_qubic(H_qubic), R_planck, R_planck] - return BlockColumnOperator(operator, axisout=0) - - else: - - full_operator = [] - for irec in range(self.Nrec): - operator = [R_qubic(H_qubic.operands[irec])] - for jrec in range(self.Nrec): - if irec == jrec: - operator += [R_planck] - else: - operator += [R_planck * 0] - full_operator += [BlockColumnOperator(operator, axisout=0)] - - return BlockRowOperator(full_operator, new_axisin=0) - - def get_invntt_operator( - self, - det_noise, - photon_noise, - weight_planck=1, - beam_correction=None, - seenpix=None, - mask=None, - ): - - if beam_correction is None: - beam_correction = [0] * self.Nrec - - if self.type == "Wide": - - photon_noise150, photon_noise220 = photon_noise - invn_q = self.qubic.get_invntt_operator( - det_noise, photon_noise150, photon_noise220 - ) - R = ReshapeOperator(invn_q.shapeout, invn_q.shape[0]) - invn_q = [R(invn_q(R.T))] - - invntt_planck143 = weight_planck * self.planck[0].get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - invntt_planck217 = weight_planck * self.planck[1].get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - R_planck = ReshapeOperator( - invntt_planck143.shapeout, invntt_planck143.shape[0] - ) - invN_143 = R_planck(invntt_planck143(R_planck.T)) - invN_217 = R_planck(invntt_planck217(R_planck.T)) - if self.Nrec == 1: - invNe = [invN_143, invN_217] - else: - invNe = [invN_143] * int(self.Nrec / 2) + [invN_217] * int( - self.Nrec / 2 - ) - invN = invn_q + invNe - return BlockDiagonalOperator(invN, axisout=0) - - elif self.type == "QubicIntegrated": - if beam_correction is None: - beam_correction = [0] * self.Nrec - else: - if type(beam_correction) is not list: - raise TypeError("Beam correction should be a list") - if len(beam_correction) != self.Nrec: - raise TypeError("List of beam correction should have Nrec elements") - - invntt_qubic = self.qubic.get_invntt_operator(det_noise, photon_noise) - R_qubic = ReshapeOperator(invntt_qubic.shapeout, invntt_qubic.shape[0]) - Operator = [R_qubic(invntt_qubic(R_qubic.T))] - - for i in range(self.Nrec): - invntt_planck = weight_planck * self.planck.get_invntt_operator( - beam_correction=beam_correction[i], mask=mask, seenpix=seenpix - ) - R_planck = ReshapeOperator( - invntt_planck.shapeout, invntt_planck.shape[0] - ) - Operator.append(R_planck(invntt_planck(R_planck.T))) - - return BlockDiagonalOperator(Operator, axisout=0) - - -class Sky: - - def __init__(self, sky_config, qubic, nu0=150): - """ - - This class allow to compute the sky at different frequency according to a given SED with astrophysical foregrounds. - - """ - self.qubic = qubic - self.sky_config = sky_config - self.nside = self.qubic.scene.nside - self.allnus = self.qubic.allnus - self.nu0 = nu0 - - self.is_cmb = False - self.is_dust = False - map_ref = [] - self.comp = [] - k = 0 - for i in self.sky_config.keys(): - if i == "cmb": - self.is_cmb = True - self.cmb = self.get_cmb(self.sky_config[i]) - self.i_cmb = k - self.comp += [c.CMB()] - map_ref += [self.cmb] - elif i == "dust": - self.is_dust = True - self.dust = self.get_dust(self.nu0, self.sky_config[i]) - map_ref += [self.dust] - self.comp += [c.Dust(nu0=self.nu0, temp=20)] - self.i_dust = k - k += 1 - self.map_ref = np.array(map_ref) - - self.A = mm.MixingMatrix(*self.comp).evaluator(self.allnus) - - def get_SED(self, beta=None): - - if beta == None: - sed = self.A() - else: - sed = self.A(beta) - - return sed - - def scale_component(self, beta=None): - - m_nu = np.zeros((len(self.allnus), 12 * self.nside**2, 3)) - sed = self.get_SED(beta) - - if self.is_cmb == True and self.is_dust == True: - sed = np.array([sed[:, 1]]).T - - if self.is_dust: - for i in range(3): - m_nu[:, :, i] = sed @ np.array([self.map_ref[self.i_dust, :, i]]) - - if self.is_cmb: - for i in range(len(self.allnus)): - m_nu[i] += self.map_ref[self.i_cmb] - - return m_nu - - def get_cmb(self, seed): - mycls = give_cl_cmb() - np.random.seed(seed) - return hp.synfast(mycls, self.nside, verbose=False, new=True).T - - def get_dust(self, nu0, model): - - sky = pysm3.Sky(nside=self.nside, preset_strings=[model]) - myfg = np.array( - sky.get_emission(nu0 * u.GHz, None).T - * utils.bandpass_unit_conversion(nu0 * u.GHz, None, u.uK_CMB) - ) - - return myfg - - -class QubicIntegrated(QubicPolyAcquisition): - - def __init__(self, d, Nsub=1, Nrec=1): - """ - - The initialization method allows to compute basic parameters such as : - - - self.allnus : array of all frequency used for the operators - - self.nueff : array of the effective frequencies - - """ - - self.d = d - self.d["nf_sub"] = Nsub - self.d["nf_recon"] = Nrec - self.Nsub = Nsub - self.Nrec = Nrec - self.fact = int(self.Nsub / self.Nrec) - self.kind = "QubicIntegrated" - if self.Nrec == 1 and self.Nsub == 1: - self.integration = "" - else: - self.integration = "Trapeze" - - self.sampling = qubic.get_pointing(self.d) - - self.scene = qubic.QubicScene(self.d) - - self.multiinstrument = instr.QubicMultibandInstrument(self.d) - - if self.d["nf_sub"] > 1: - QubicPolyAcquisition.__init__( - self, self.multiinstrument, self.sampling, self.scene, self.d - ) - else: - self.subacqs = [ - QubicAcquisition( - self.multiinstrument[0], self.sampling, self.scene, self.d - ) - ] - - if self.integration == "Trapeze": - _, _, self.nueff, _, _, _ = qubic.compute_freq( - self.d["filter_nu"], - Nfreq=self.Nrec, - relative_bandwidth=self.d["filter_relative_bandwidth"], - ) - - else: - _, self.nus_edge, self.nueff, _, _, _ = qubic.compute_freq( - self.d["filter_nu"], Nfreq=(self.d["nf_recon"]) - ) - - self.nside = self.scene.nside - self.allnus = np.array([q.filter.nu / 1e9 for q in self.multiinstrument]) - # self.subacqs = [QubicAcquisition(self.multiinstrument[i], self.sampling, self.scene, self.d) for i in range(len(self.multiinstrument))] - - ############ - ### FWHM ### - ############ - - for a in self.subacqs[1:]: - a.comm = self.subacqs[0].comm - - self.allfwhm = np.zeros(len(self.multiinstrument)) - for i in range(len(self.multiinstrument)): - self.allfwhm[i] = self.subacqs[i].get_convolution_peak_operator().fwhm - - self.final_fwhm = np.zeros(self.d["nf_recon"]) - fact = int(self.d["nf_sub"] / self.d["nf_recon"]) - for i in range(self.d["nf_recon"]): - self.final_fwhm[i] = np.mean( - self.allfwhm[int(i * fact) : int(fact * (i + 1))] - ) - - def _get_average_instrument_acq(self): - """ - Create and return a QubicAcquisition instance of a monochromatic - instrument with frequency correspondent to the mean of the - frequency range. - """ - # if len(self) == 1: - # return self[0] - q0 = self.multiinstrument[0] - nu_min = self.multiinstrument[0].filter.nu - nu_max = self.multiinstrument[-1].filter.nu - nep = q0.detector.nep - fknee = q0.detector.fknee - fslope = q0.detector.fslope - - d1 = self.d.copy() - d1["filter_nu"] = (nu_max + nu_min) / 2.0 - d1["filter_relative_bandwidth"] = (nu_max - nu_min) / ((nu_max + nu_min) / 2.0) - d1["detector_nep"] = nep - d1["detector_fknee"] = fknee - d1["detector_fslope"] = fslope - - q = instr.QubicInstrument(d1, FRBW=q0.FRBW) - q.detector = q0.detector - # s_ = self.sampling - # nsamplings = self.multiinstrument[0].comm.allreduce(len(s_)) - - d1["random_pointing"] = True - d1["sweeping_pointing"] = False - d1["repeat_pointing"] = False - d1["RA_center"] = 0.0 - d1["DEC_center"] = 0.0 - d1["npointings"] = self.d["npointings"] - d1["dtheta"] = 15.0 - d1["period"] = self.d["period"] - - # s = create_random_pointings([0., 0.], nsamplings, 10., period=s_.period) - a = QubicAcquisition(q, self.sampling, self.scene, d1) - return a, q - - def get_noise(self, det_noise, photon_noise, seed=None): - """ - - Method which compute the noise of QUBIC. - - """ - np.random.seed(seed) - a, _ = self._get_average_instrument_acq() - return a.get_noise(det_noise=det_noise, photon_noise=photon_noise, seed=seed) - - def get_TOD( - self, - skyconfig, - beta, - convolution=False, - myfwhm=None, - noise=False, - bandpass_correction=False, - ): - """ - - Method which allow to compute QUBIC TOD for a given skyconfig according to a given beta. - - """ - - s = Sky(skyconfig, self) - m_nu = s.scale_component(beta) - sed = s.get_SED(beta) - - ### Compute operator with Nsub acqusitions - array = self._get_array_of_operators(convolution=convolution, myfwhm=myfwhm) - h = BlockRowOperator(array, new_axisin=0) - - if self.Nsub == 1: - tod = h(m_nu[0]) - else: - tod = h(m_nu) - - if noise: - n = self.get_noise() - tod += n.copy() - - if bandpass_correction: - print("Bandpass correction") - # print(s.map_ref, beta) - if s.map_ref is None or beta == None: - raise TypeError("Check that map_ref or sed are not set to None") - - if s.is_cmb: - sed = np.array([sed[:, 1].T]) - # print(sed.shape) - tod = self.bandpass_correction(h, tod, s.map_ref[s.i_dust], sed) - - return tod - - def bandpass_correction(self, H, tod, map_ref, sed): - - fact = int(self.Nsub / self.Nrec) - k = 0 - modelsky = np.zeros((len(self.allnus), 12 * self.nside**2, 3)) - - for i in range(3): - # print(sed.shape, np.array([map_ref[:, i]]).shape) - modelsky[:, :, i] = sed.T @ np.array([map_ref[:, i]]) - for irec in range(self.Nrec): - delta = modelsky[fact * irec : (irec + 1) * fact] - np.mean( - modelsky[fact * irec : (irec + 1) * fact], axis=0 - ) - for jfact in range(fact): - delta_tt = H.operands[k](delta[jfact]) - tod -= delta_tt - k += 1 - - return tod - - def _get_array_of_operators(self, convolution=False, myfwhm=None): - - op = [] - - # Loop through each acquisition in subacqs - k = 0 - for ia, a in enumerate(self.subacqs): - - ################### - ### Convolution ### - ################### - - if convolution: - # Calculate the convolution operator for this sub-acquisition - allfwhm = self.allfwhm.copy() - target = allfwhm[ia] - if myfwhm is not None: - target = myfwhm[ia] - C = HealpixConvolutionGaussianOperator(fwhm=target, lmax=2 * self.nside) - else: - # If convolution is False, set the operator to an identity operator - C = IdentityOperator() - - k += 1 - - op.append(a.get_operator() * C) - - return op - - def get_operator(self, convolution=False, myfwhm=None): - - # Initialize an empty list to store the sum of operators for each frequency band - op_sum = [] - - # Get an array of operators for all sub-arrays - op = np.array( - self._get_array_of_operators(convolution=convolution, myfwhm=myfwhm) - ) - # print('done') - # Loop over the frequency bands - op_sum = [] - for irec in range(self.Nrec): - imin = irec * self.fact - imax = (irec + 1) * self.fact - 1 - - op_sum += [ - op[ - (self.allnus >= self.allnus[imin]) - * (self.allnus <= self.allnus[imax]) - ].sum(axis=0) - ] - - return BlockRowOperator( - op_sum, new_axisin=0 - ) # * MPIDistributionIdentityOperator(self.d['comm']) - - def get_coverage(self): - return self.subacqs[0].get_coverage() - - def get_invntt_operator(self, det_noise, photon_noise): - # Get the inverse noise variance covariance matrix from the first sub-acquisition - # invN = self.subacqs[0].get_invntt_operator(det_noise, photon_noise) - # return invN - - # Get the inverse noise variance covariance matrix from the first sub-acquisition - # invN = self.subacqs[0].get_invntt_operator(det_noise, photon_noise) - # _, a = self._get_average_instrument_acq() - sigma = self.subacqs[0].instrument.detector.nep / np.sqrt(self.d["period"] * 2) - sigma_photon = self.subacqs[0].instrument._get_noise_photon_nep( - self.scene - ) / np.sqrt(self.d["period"] * 2) - - if det_noise == True and photon_noise == True: - sig = np.sqrt(sigma**2 + sigma_photon**2) - elif det_noise == True and photon_noise == False: - sig = sigma - elif det_noise == False and photon_noise == True: - sig = sigma_photon.copy() - else: - sig = sigma - - nsamplings = self.sampling.comm.allreduce(len(self.sampling)) - out = DiagonalOperator( - 1 / sig**2, - broadcast="rightward", - shapein=(len(self.subacqs[0].instrument.detector), len(self.sampling)), - ) - out /= ( - nsamplings - * self.sampling.period - / (self.d["effective_duration"] * 31557600) - ) - - return out - - -''' -class QubicTwoBands: - - def __init__(self, qubic150, qubic220): - - self.qubic150 = qubic150 - self.qubic220 = qubic220 - self.scene = self.qubic150.scene - self.qubic150.d['noiseless'] = self.qubic220.d['noiseless'] - self.Nsub = self.qubic150.Nsub*2 - self.Nrec = self.qubic150.Nrec*2 - self.type = 'TwoBands' - self.final_fwhm = np.array([]) - self.final_fwhm = np.append(self.final_fwhm, self.qubic150.final_fwhm) - self.final_fwhm = np.append(self.final_fwhm, self.qubic220.final_fwhm) - self.qubic150.d['photon_noise'] = self.qubic220.d['photon_noise'] - self.Nsamples = self.qubic150.Nsamples - self.Ndets = 2*992 - - self.nueff = np.array([]) - - self.nueff = np.array(list(self.qubic150.nueff)+list(self.qubic220.nueff)) - self.allnus = np.array(list(self.qubic150.allnus)+list(self.qubic220.allnus)) - self.allfwhm = np.array(list(self.qubic150.allfwhm)+list(self.qubic220.allfwhm)) - - def get_TOD(self, skyconfig, beta, convolution=False, myfwhm=None, noise=False, bandpass_correction=False): - - tod150 = self.qubic150.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod220 = self.qubic220.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod = np.r_[tod150, tod220] - - if noise: - n = self.get_noise() - tod += n.copy() - - return tod - - - def get_operator(self, convolution): - - """ - - This method compute the reconstruction operator for the TwoBands instrument. - - """ - - self.H150 = self.qubic150.get_operator(convolution=convolution) - self.H220 = self.qubic220.get_operator(convolution=convolution) - - ope = [self.H150, self.H220] - - if self.qubic150.d['nf_recon'] == 1: - hh = BlockDiagonalOperator(ope, new_axisout=0) - R = ReshapeOperator(hh.shapeout, (hh.shapeout[0]*hh.shapeout[1], hh.shapeout[2])) - return R * hh - else: - return BlockDiagonalOperator(ope, axisin=0) - - def get_coverage(self): - return self.qubic150.get_coverage() - - def get_noise(self): - - self.n150 = self.qubic150.get_noise() - self.n220 = self.qubic220.get_noise() - - return np.r_[self.n150, self.n220] - - def get_invntt_operator(self): - - self.invn150 = self.qubic150.get_invntt_operator() - self.invn220 = self.qubic220.get_invntt_operator() - - return BlockDiagonalOperator([self.invn150, self.invn220], axisout=0) -class QubicWideBand: - - def __init__(self, qubic150, qubic220): - - self.qubic150 = qubic150 - self.qubic220 = qubic220 - self.scene = self.qubic150.scene - self.qubic150.d['noiseless'] = self.qubic220.d['noiseless'] - self.Nsub = self.qubic150.Nsub*2 - self.Nrec = self.qubic150.Nrec*2 - self.type = 'WideBand' - self.final_fwhm = np.array([]) - self.final_fwhm = np.append(self.final_fwhm, self.qubic150.final_fwhm) - self.final_fwhm = np.append(self.final_fwhm, self.qubic220.final_fwhm) - self.qubic150.d['photon_noise'] = self.qubic220.d['photon_noise'] - self.photon_noise = self.qubic150.d['photon_noise'] - self.Nsamples = self.qubic150.Nsamples - self.Ndets = 992 - - self.nueff = np.array(list(self.qubic150.nueff)+list(self.qubic220.nueff)) - self.allnus = np.array(list(self.qubic150.allnus)+list(self.qubic220.allnus)) - self.allfwhm = np.array(list(self.qubic150.allfwhm)+list(self.qubic220.allfwhm)) - def get_operator(self, convolution=False, myfwhm=None): - - """ - - Method to compute the reconstruction operator for the WideBand instrument. - - """ - self.H150 = self.qubic150.get_operator(convolution=convolution, myfwhm=myfwhm) - self.H220 = self.qubic220.get_operator(convolution=convolution, myfwhm=myfwhm) - operator = [self.H150, self.H220] - - ### Nrec = 1 - if self.qubic150.Nrec == 1: - return BlockRowOperator(operator, new_axisin=0) - ### Nrec > 1 - else: - return BlockRowOperator(operator, axisin=0) - - def get_TOD(self, skyconfig, beta, convolution=False, myfwhm=None, noise=False, bandpass_correction=False): - - tod150 = self.qubic150.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod220 = self.qubic220.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod = tod150 + tod220 - - if noise: - n = self.get_noise() - tod += n.copy() - - return tod - - def get_noise(self): - - """ - - Method to compute the noise vector for the WideBand instrument. - It assumes only one contribution of the noise detectors but the sum of the photon noise of each separated focal plane. - - """ - - detector_noise = self.qubic150.multiinstrument[0].get_noise_detector(self.qubic150.sampling) - #print(self.qubic150.sampling.period, self.qubic150.d['effective_duration']) - nsamplings = self.qubic150.sampling.comm.allreduce(len(self.qubic150.sampling)) - fact = np.sqrt(nsamplings * self.qubic150.sampling.period / (self.qubic150.d['effective_duration'] * 31557600)) - - if self.photon_noise: - photon_noise150 = self.qubic150.multiinstrument[0].get_noise_photon(self.qubic150.sampling, self.qubic150.scene) - photon_noise220 = self.qubic220.multiinstrument[0].get_noise_photon(self.qubic220.sampling, self.qubic220.scene) - photon_noise = photon_noise150 + photon_noise220 - - return fact * (detector_noise + photon_noise) - else: - return fact * detector_noise - - def get_invntt_operator(self): - - """ - - Method to compute the inverse noise covariance matrix in time-domain. - - """ - - sigma = self.qubic150.multiinstrument[0].detector.nep / np.sqrt(2 * self.qubic150.sampling.period) - sigma_photon150 = self.qubic150.multiinstrument[0]._get_noise_photon_nep(self.qubic150.scene) / np.sqrt(2 * self.qubic150.sampling.period) - sigma_photon220 = self.qubic220.multiinstrument[0]._get_noise_photon_nep(self.qubic220.scene) / np.sqrt(2 * self.qubic220.sampling.period) - - sig = np.sqrt(sigma**2 + sigma_photon150**2 + sigma_photon220**2) - - f = (len(self.qubic150.sampling) * self.qubic150.sampling.period / (self.qubic150.d['effective_duration'] * 31557600)) - out = DiagonalOperator(1 / sig ** 2, broadcast='rightward', - shapein=(len(self.qubic150.multiinstrument[0]), len(self.qubic150.sampling))) / f - - - return out#self.qubic150.get_invntt_operator() + self.qubic220.get_invntt_operator() - - def get_coverage(self): - return self.qubic150.get_coverage() -class QubicUltraWideBand(QubicIntegrated): - - def __init__(self, d, Nsub, Nrec): - - - ### Warnings - if Nsub == 1: - raise TypeError('The number of Nsub should be above 1') - - if Nsub%2 != 0: - raise TypeError('The number of bandpass integration should be divisible by an integer') - - Nsub = int(Nsub/2) - - self.d150 = d.copy() - self.d220 = d.copy() - self.Nsub = Nsub - self.Nrec = Nrec - self.fact_sub = int(2*Nsub/Nrec) - self.d150['filter_nu'] = 150 * 1e9 - self.d220['filter_nu'] = 220 * 1e9 - - ### Qubic acquisitions - self.qubic150 = QubicIntegrated(self.d150, Nsub=self.Nsub, Nrec=self.Nrec) - self.qubic220 = QubicIntegrated(self.d220, Nsub=self.Nsub, Nrec=self.Nrec) - self.scene = self.qubic150.scene - - self.nu_down = 131.25 - self.nu_up = 247.5 - self.nu_ave = np.mean(np.array([self.nu_up, self.nu_down])) - - self.allnus = np.array(list(self.qubic150.allnus) + list(self.qubic220.allnus)) - self.allfwhm = np.array(list(self.qubic150.allfwhm) + list(self.qubic220.allfwhm)) - - _, _, self.nueff, _, _, _ = qubic.compute_freq(self.nu_ave, self.Nrec, (self.nu_up - self.nu_down)/self.nu_ave) - - self.subacqs = self.qubic150.subacqs + self.qubic220.subacqs - - - """ - - if self.Nsub == 1 and self.Nrec == 1: - _, _, self.allnus, _, _, _ = qubic.compute_freq(self.nu_ave, self.Nsub, (self.nu_up - self.nu_down)/self.nu_ave) - else: - _, self.allnus, _, _, _, _ = qubic.compute_freq(self.nu_ave, self.Nsub-1, (self.nu_up - self.nu_down)/self.nu_ave) - ### Scene - self.scene = self.qubic.scene - - - - if self.bandpass is None: - self.bandpass = np.ones(self.Nsub) - - if self.Nsub != len(self.bandpass): - raise TypeError(f'Bandpass should have {len(self.bandpass)} values.') - - - ### Effective frequencies - self.nueff = self.qubic.nueff - - ### All frequencies - self.allnus = self.qubic.allnus - - ### All FWHM (rad) - self.allfwhm = self.qubic.allfwhm - """ - - def _get_average_instrument(self): - - """ - Create and return a QubicAcquisition instance of a monochromatic - instrument with frequency correspondent to the mean of the - frequency range. - """ - - #if len(self) == 1: - # return self[0] - - ### 150 GHz - q150 = self.qubic150.multiinstrument[0] - - nu150_min = self.qubic150.multiinstrument[0].filter.nu - nu150_max = self.qubic150.multiinstrument[-1].filter.nu - - nep150 = q150.detector.nep - fknee150 = q150.detector.fknee - fslope150 = q150.detector.fslope - - d1 = self.qubic150.d.copy() - d1['filter_nu'] = (nu150_max + nu150_min) / 2. - d1['filter_relative_bandwidth'] = (nu150_max - nu150_min) / ((nu150_max + nu150_min) / 2.) - d1['detector_nep'] = nep150 - d1['detector_fknee'] = fknee150 - d1['detector_fslope'] = fslope150 - ins150 = instr.QubicInstrument(d1, FRBW=q150.FRBW) - - - ### 220 GHz - - q220 = self.qubic220.multiinstrument[0] - nu220_min = self.qubic220.multiinstrument[0].filter.nu - nu220_max = self.qubic220.multiinstrument[-1].filter.nu - - nep220 = q220.detector.nep - fknee220 = q220.detector.fknee - fslope220 = q220.detector.fslope - - d1 = self.qubic220.d.copy() - d1['filter_nu'] = (nu220_max + nu220_min) / 2. - d1['filter_relative_bandwidth'] = (nu220_max - nu220_min) / ((nu220_max + nu220_min) / 2.) - d1['detector_nep'] = nep220 - d1['detector_fknee'] = fknee220 - d1['detector_fslope'] = fslope220 - - ins220 = instr.QubicInstrument(d1, FRBW=q220.FRBW) - - return ins150, ins220 - - def get_TOD(self, skyconfig, beta, convolution=False, myfwhm=None, noise=False, bandpass_correction=False): - - tod150 = self.qubic150.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod220 = self.qubic220.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod = tod150 + tod220 - - if noise: - n = self.get_noise() - tod += n.copy() - - return tod - - def get_operator(self, convolution=False, myfwhm=None): - - """ - - Method to compute the reconstruction operator for the WideBand instrument. - - """ - self.H150 = self.qubic150._get_array_of_operators(convolution=convolution, myfwhm=myfwhm) - self.H220 = self.qubic220._get_array_of_operators(convolution=convolution, myfwhm=myfwhm) - - op = self.H150 + self.H220 - - op_sum = [] - if self.Nrec == 1: - op_sum = np.sum(np.array(op), axis=0) - return op_sum - else: - for irec in range(self.Nrec): - imin = irec*self.fact_sub - imax = (irec+1)*self.fact_sub - op_sum += [np.sum(np.array(op[imin:imax]), axis=0)] - - return BlockRowOperator(op_sum, new_axisin=0) - - - def get_noise(self, weights=None): - - """ - - Method to compute the noise vector for the WideBand instrument. - It assumes only one contribution of the noise detectors but the sum of the photon noise of each separated focal plane. - - """ - - if weights is None: - weights = np.ones(3) - - ave_ins150, ave_ins220 = self._get_average_instrument() - detector_noise = ave_ins150.get_noise_detector(self.qubic150.sampling) - nsamplings = self.qubic150.sampling.comm.allreduce(len(self.qubic150.sampling)) - fact = np.sqrt(nsamplings * self.qubic150.sampling.period / (self.qubic150.d['effective_duration'] * 31557600)) - - photon_noise150 = ave_ins150.get_noise_photon(self.qubic150.sampling, self.qubic150.scene) - photon_noise220 = ave_ins220.get_noise_photon(self.qubic220.sampling, self.qubic220.scene) - - return fact * (weights[0] * detector_noise + weights[1] * photon_noise150 + weights[2] * photon_noise220) - - def get_invntt_operator(self, weights=None): - - """ - - Method to compute the inverse noise covariance matrix in time-domain. - - """ - ave_ins150, ave_ins220 = self._get_average_instrument() - if weights is None: - weights = np.ones(3) - - sigma = weights[0] * ave_ins150.detector.nep / np.sqrt(2 * self.qubic150.sampling.period) - sigma_photon150 = weights[1] * ave_ins150._get_noise_photon_nep(self.qubic150.scene) / np.sqrt(2 * self.qubic150.sampling.period) - sigma_photon220 = weights[2] * ave_ins220._get_noise_photon_nep(self.qubic220.scene) / np.sqrt(2 * self.qubic220.sampling.period) - - sig = np.sqrt(sigma**2 + sigma_photon150**2 + sigma_photon220**2) - - f = (len(self.qubic150.sampling) * self.qubic150.sampling.period / (self.qubic150.d['effective_duration'] * 31557600)) - out = DiagonalOperator(1 / sig ** 2, broadcast='rightward', - shapein=(len(self.qubic150.multiinstrument[0]), len(self.qubic150.sampling))) / f - - - return out - - def get_coverage(self): - return self.qubic150.get_coverage() -class QubicDualBand(QubicIntegrated): - - def __init__(self, d, Nsub, Nrec): - - if Nrec == 1: - raise TypeError('You can not reconstruct 1 band with DualBand instrument') - if Nsub == 1: - raise TypeError('You should have at least Nsub = 2') - - if Nsub%2 != 0: - raise TypeError('You should have the same number of sub-bands in each bands') - - if Nrec%2 != 0: - raise TypeError('You should reconstruct the same number of band for each focal plane') - - self.d150 = d.copy() - self.d220 = d.copy() - self.Nrec = int(Nrec/2) - self.Nsub = int(Nsub/2) - - self.fact_sub = int(Nsub/Nrec) - self.d150['filter_nu'] = 150 * 1e9 - self.d220['filter_nu'] = 220 * 1e9 - - ### Qubic acquisitions - self.qubic150 = QubicIntegrated(self.d150, Nsub=self.Nsub, Nrec=self.Nrec) - self.qubic220 = QubicIntegrated(self.d220, Nsub=self.Nsub, Nrec=self.Nrec) - self.scene = self.qubic150.scene - - self.allnus = np.array(list(self.qubic150.allnus) + list(self.qubic220.allnus)) - self.allfwhm = np.array(list(self.qubic150.allfwhm) + list(self.qubic220.allfwhm)) - self.nueff = np.array(list(self.qubic150.nueff) + list(self.qubic220.nueff)) - - - def get_TOD(self, skyconfig, beta, convolution=False, myfwhm=None, noise=False, bandpass_correction=False): - - tod150 = self.qubic150.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod220 = self.qubic220.get_TOD(skyconfig, beta, convolution, myfwhm, noise=False, bandpass_correction=bandpass_correction) - tod = np.r_[tod150, tod220] - - if noise: - n = self.get_noise() - tod += n.copy() - - return tod - - def get_operator(self, convolution=False, myfwhm=None): - - self.H150 = np.array(self.qubic150._get_array_of_operators(convolution=convolution, myfwhm=myfwhm)) - self.H220 = np.array(self.qubic220._get_array_of_operators(convolution=convolution, myfwhm=myfwhm)) - - ### 150 GHz - - op_sum=[] - for irec in range(self.Nrec): - imin = irec*self.fact_sub - imax = (irec+1)*self.fact_sub - 1 - - op_sum += [self.H150[(self.qubic150.allnus >= self.qubic150.allnus[imin]) * (self.qubic150.allnus <= self.qubic150.allnus[imax])].sum(axis=0)] - - self.H150 = BlockRowOperator(op_sum, new_axisin=0) - - - ### 220 GHz - - op_sum=[] - for irec in range(self.Nrec): - imin = irec*self.fact_sub - imax = (irec+1)*self.fact_sub - 1 - - op_sum += [self.H220[(self.qubic220.allnus >= self.qubic220.allnus[imin]) * (self.qubic220.allnus <= self.qubic220.allnus[imax])].sum(axis=0)] - - self.H220 = BlockRowOperator(op_sum, new_axisin=0) - - if self.Nrec == 1: - hh = BlockDiagonalOperator([self.H150, self.H220], new_axisin=0) - R = ReshapeOperator(hh.shapeout, (hh.shapeout[0]*hh.shapeout[1], hh.shapeout[2])) - return R * hh - else: - return BlockDiagonalOperator([self.H150, self.H220], axisin=0) - - def get_noise(self): - - self.n150 = self.qubic150.get_noise() - self.n220 = self.qubic220.get_noise() - - return np.r_[self.n150, self.n220] - - def get_invntt_operator(self): - - self.invn150 = self.qubic150.get_invntt_operator() - self.invn220 = self.qubic220.get_invntt_operator() - - return BlockDiagonalOperator([self.invn150, self.invn220], axisout=0) - - -''' - - -class QubicFullBand(QubicPolyAcquisition): - - def __init__(self, d, Nsub, Nrec, relative_bandwidth=0.6138613861386139): - - if Nrec % 2 != 0 and Nrec != 1: - raise TypeError( - "You should put a number of reconstructed sub-bands divisible by 2" - ) - self.relative_bandwidth = relative_bandwidth - - if Nsub == 1: - raise TypeError("You should use Nsub > 1") - - self.d = d - self.Nsub = int(Nsub / 2) - self.Nrec = Nrec - self.d["nf_sub"] = self.Nsub - self.d["nf_recon"] = self.Nrec - self.kind = "Wide" - self.number_FP = 1 - - self.nu_down = 131.25 - self.nu_up = 247.5 - - # self.nu_average = np.mean(np.array([self.nu_down, self.nu_up])) - # self.d['filter_nu'] = self.nu_average * 1e9 - if Nsub != 1: - _, allnus150, _, _, _, _ = qubic.compute_freq( - 150, Nfreq=int(self.Nsub) - 1, relative_bandwidth=0.25 - ) - _, allnus220, _, _, _, _ = qubic.compute_freq( - 220, Nfreq=int(self.Nsub) - 1, relative_bandwidth=0.25 - ) - else: - _, _, allnus150, _, _, _ = qubic.compute_freq( - 150, Nfreq=int(self.Nsub), relative_bandwidth=0.25 - ) - _, _, allnus220, _, _, _ = qubic.compute_freq( - 220, Nfreq=int(self.Nsub), relative_bandwidth=0.25 - ) - self.allnus = np.array(list(allnus150) + list(allnus220)) - - self.Nsub *= 2 - - # self.d['nf_sub'] = 2 * self.d['nf_sub'] - self.multiinstrument = instr.QubicMultibandInstrument(self.d) - self.sampling = qubic.get_pointing(self.d) - self.scene = qubic.QubicScene(self.d) - - self.subacqs = [ - QubicAcquisition(self.multiinstrument[i], self.sampling, self.scene, self.d) - for i in range(len(self.multiinstrument)) - ] - self.subacqs150 = self.subacqs[: int(self.Nsub / 2)] - self.subacqs220 = self.subacqs[int(self.Nsub / 2) : self.Nsub] - - ### For MPI distribution - if self.Nsub > 1: - QubicPolyAcquisition.__init__( - self, self.multiinstrument, self.sampling, self.scene, self.d - ) - - self.allfwhm = np.zeros(len(self.multiinstrument)) - for i in range(len(self.multiinstrument)): - self.allfwhm[i] = self.subacqs[i].get_convolution_peak_operator().fwhm - - self.nside = self.scene.nside - self.npix = 12 * self.nside**2 - - invn = self.get_invntt_operator(True, True, True) - self.Ndets, self.Nsamples = invn.shapein - - def _get_array_operators(self, convolution=False, myfwhm=None): - """ - - Compute all the Nsub sub-acquisition in one list. Each sub-acquisition contain the instrument specificities and describe the - synthetic beam for each frequencies. - - """ - - operator = [] - R = ReshapeOperator((1, 12 * self.nside**2, 3), (12 * self.nside**2, 3)) - for inu, i in enumerate(self.subacqs): - if convolution: - if myfwhm is not None: - C = HealpixConvolutionGaussianOperator(fwhm=myfwhm[inu]) - else: - C = HealpixConvolutionGaussianOperator(fwhm=self.allfwhm[inu]) - else: - C = IdentityOperator() - - P = i.get_operator() * C - - operator.append(P) - - self.Ndets, self.Nsamples = operator[0].shapeout - - return operator - - def get_operator(self, convolution, myfwhm=None): - - operator = self._get_array_operators(convolution=convolution, myfwhm=myfwhm) - array_operator = np.array(operator) - op_sum = [] - - f = int(self.Nsub / self.Nrec) - - ### 150 GHz - for irec in range(self.Nrec): - imin = irec * f - imax = (irec + 1) * f - 1 - op_sum += [ - array_operator[ - (self.allnus >= self.allnus[imin]) - * (self.allnus <= self.allnus[imax]) - ].sum(axis=0) - ] - - return BlockRowOperator(op_sum, new_axisin=0) - - def get_invntt_operator(self, det_noise, photon_noise150, photon_noise220): - - invn150 = self.subacqs150[0].get_invntt_operator( - det_noise=False, photon_noise=photon_noise150 - ) - invn220 = self.subacqs220[0].get_invntt_operator( - det_noise=det_noise, photon_noise=photon_noise220 - ) - - return ( - invn150 + invn220 - ) / 2 # factor 2 because it added twice the detector noise - - def get_noise(self, det_noise, photon_noise150, photon_noise220, seed=None): - np.random.seed(seed) - ndet = self.subacqs150[0].get_noise(det_noise, False) - npho150 = self.subacqs150[0].get_noise(False, photon_noise150) # - ndet - npho220 = self.subacqs220[0].get_noise(False, photon_noise220) # - ndet - return ndet, npho150, npho220 diff --git a/src/FMM/mapmaking_old/noise_timeline.py b/src/FMM/mapmaking_old/noise_timeline.py deleted file mode 100644 index 6b9c9a3..0000000 --- a/src/FMM/mapmaking_old/noise_timeline.py +++ /dev/null @@ -1,128 +0,0 @@ -import mapmaking.frequency_acquisition as frequency_acquisition -import numpy as np -import qubic - - -class QubicNoise: - - def __init__( - self, band, npointings, comm=None, size=1, detector_nep=4.7e-17, seed=None - ): - - if band != 150 and band != 220: - raise TypeError("Please choose the QubicWideBandNoise method.") - - dictfilename = "dicts/pipeline_demo.dict" - d = qubic.qubicdict.qubicDict() - d.read_from_file(dictfilename) - self.seed = seed - d["TemperatureAtmosphere150"] = None - d["TemperatureAtmosphere220"] = None - d["EmissivityAtmosphere150"] = None - d["EmissivityAtmosphere220"] = None - d["detector_nep"] = detector_nep - self.npointings = npointings - d["npointings"] = npointings - d["comm"] = comm - d["nprocs_instrument"] = size - d["nprocs_sampling"] = 1 - - self.dict = d.copy() - self.dict["filter_nu"] = int(band) - self.dict["nf_sub"] = 1 - self.dict["nf_recon"] = 1 - self.dict["type_instrument"] = "" - self.acq = frequency_acquisition.QubicIntegrated(self.dict, Nsub=1, Nrec=1) - - def get_noise(self, det_noise, pho_noise): - n = self.detector_noise() * 0 - - if det_noise: - n += self.detector_noise() - if pho_noise: - n += self.photon_noise() - return n - - def photon_noise(self): - return self.acq.get_noise(det_noise=False, photon_noise=True, seed=self.seed) - - def detector_noise(self): - return self.acq.get_noise(det_noise=True, photon_noise=False, seed=self.seed) - - def total_noise(self, wdet, wpho): - ndet = wdet * self.detector_noise() - npho = wpho * self.photon_noise() - return ndet + npho - - -class QubicWideBandNoise: - - def __init__(self, d, npointings, detector_nep=4.7e-17): - - self.d = d - self.npointings = npointings - self.detector_nep = detector_nep - - def total_noise(self, wdet, wpho150, wpho220, seed=None): - - Qubic150 = QubicNoise( - 150, - self.npointings, - comm=self.d["comm"], - size=self.d["nprocs_instrument"], - detector_nep=self.detector_nep, - seed=seed, - ) - if seed is not None: - seed += 1 - Qubic220 = QubicNoise( - 220, - self.npointings, - comm=self.d["comm"], - size=self.d["nprocs_instrument"], - detector_nep=self.detector_nep, - seed=seed, - ) - - ndet = wdet * Qubic150.detector_noise() - npho150 = wpho150 * Qubic150.photon_noise() - npho220 = wpho220 * Qubic220.photon_noise() - - return ndet + npho150 + npho220 - - -class QubicDualBandNoise: - - def __init__(self, d, npointings, detector_nep=4.7e-17, seed=None): - - self.d = d - self.npointings = npointings - self.detector_nep = detector_nep - - def total_noise(self, wdet, wpho150, wpho220, seed=None): - - Qubic150 = QubicNoise( - 150, - self.npointings, - comm=self.d["comm"], - size=self.d["nprocs_instrument"], - detector_nep=self.detector_nep, - seed=seed, - ) - if seed is not None: - seed += 1 - Qubic220 = QubicNoise( - 220, - self.npointings, - comm=self.d["comm"], - size=self.d["nprocs_instrument"], - detector_nep=self.detector_nep, - seed=seed, - ) - - ndet150 = wdet * Qubic150.detector_noise().ravel() - ndet220 = wdet * Qubic220.detector_noise().ravel() - npho150 = wpho150 * Qubic150.photon_noise().ravel() - npho220 = wpho220 * Qubic220.photon_noise().ravel() - - return np.r_[ndet150 + npho150, ndet220 + npho220] diff --git a/src/FMM/mapmaking_old/systematics.py b/src/FMM/mapmaking_old/systematics.py deleted file mode 100644 index 6cb984b..0000000 --- a/src/FMM/mapmaking_old/systematics.py +++ /dev/null @@ -1,1269 +0,0 @@ -# QUBIC stuff -import gc -import os -import sys - -# General stuff -import healpy as hp -import matplotlib.pyplot as plt -import numpy as np -import pysm3 -import qubic - -path_to_data = os.getcwd() + "/data/" - -import time -import warnings - -warnings.filterwarnings("ignore") -import pickle -from importlib import reload - -# FG-Buster packages -import fgb.component_model as c -import fgb.mixing_matrix as mm -import mapmaking.instrument as instr -import pysm3.units as u -from mapmaking.frequency_acquisition import ( - QubicAcquisition, - QubicPolyAcquisition, - arcmin2rad, - compute_fwhm_to_convolve, - create_array, - get_preconditioner, - give_cl_cmb, -) -from pyoperators import * - -# PyOperators stuff -from pysimulators import * -from pysimulators.interfaces.healpy import HealpixConvolutionGaussianOperator -from pysm3 import utils -from qubic.data import PATH - - -def polarized_I(m, nside, polarization_fraction=0.01): - - polangle = hp.ud_grade(hp.read_map(path_to_data + "psimap_dust90_512.fits"), nside) - depolmap = hp.ud_grade(hp.read_map(path_to_data + "gmap_dust90_512.fits"), nside) - cospolangle = np.cos(2.0 * polangle) - sinpolangle = np.sin(2.0 * polangle) - # print(depolmap.shape) - P_map = polarization_fraction * depolmap * hp.ud_grade(m, nside) - return P_map * np.array([cospolangle, sinpolangle]) - - -def create_array(name, nus, nside): - - if name == "noise": - shape = (2, 12 * nside**2, 3) - else: - shape = len(nus) - pkl_file = open(path_to_data + "AllDataSet_Components_MapMaking.pkl", "rb") - dataset = pickle.load(pkl_file) - - myarray = np.zeros(shape) - - for ii, i in enumerate(nus): - myarray[ii] = dataset[name + str(i)] - - return myarray - - -def get_preconditioner(cov): - if cov is not None: - cov_inv = 1 / cov - cov_inv[np.isinf(cov_inv)] = 0.0 - preconditioner = DiagonalOperator(cov_inv, broadcast="rightward") - else: - preconditioner = None - return preconditioner - - -def arcmin2rad(arcmin): - return arcmin * 0.000290888 - - -def give_cl_cmb(r=0, Alens=1.0): - power_spectrum = hp.read_cl(path_to_data + "Cls_Planck2018_lensed_scalar.fits")[ - :, :4000 - ] - if Alens != 1.0: - power_spectrum[2] *= Alens - if r: - power_spectrum += ( - r - * hp.read_cl( - path_to_data + "Cls_Planck2018_unlensed_scalar_and_tensor_r1.fits" - )[:, :4000] - ) - return power_spectrum - - -def rad2arcmin(rad): - return rad / 0.000290888 - - -def circular_mask(nside, center, radius): - lon = center[0] - lat = center[1] - vec = hp.ang2vec(lon, lat, lonlat=True) - disc = hp.query_disc(nside, vec, radius=np.deg2rad(radius)) - m = np.zeros(hp.nside2npix(nside)) - m[disc] = 1 - return np.array(m, dtype=bool) - - -def compute_fwhm_to_convolve(allres, target): - s = np.sqrt(target**2 - allres**2) - # if s == np.nan: - # s = 0 - return s - - -def find_co(comp, nus_edge): - return np.sum(nus_edge < comp[-1].nu) - 1 - - -def parse_addition_operator(operator): - - if isinstance(operator, AdditionOperator): - for op in operator.operands: - parse_addition_operator(op) - - else: - parse_composition_operator(operator) - return operator - - -def parse_composition_operator(operator): - for i, op in enumerate(operator.operands): - if isinstance(op, HealpixConvolutionGaussianOperator): - operator.operands[i] = HealpixConvolutionGaussianOperator(fwhm=10) - - -def insert_inside_list(operator, element, position): - - list = operator.operands - list.insert(position, element) - return CompositionOperator(list) - - -def delete_inside_list(operator, position): - - list = operator.operands - list.pop(position) - return CompositionOperator(list) - - -def mychi2(beta, obj, Hqubic, data, solution, nsamples): - - H_for_beta = obj.get_operator(beta, convolution=False, H_qubic=Hqubic) - fakedata = H_for_beta(solution) - fakedata_norm = obj.normalize(fakedata, nsamples) - return np.sum((fakedata_norm - data) ** 2) - - -def fit_beta(tod, nsamples, obj, H_qubic, outputs): - - tod_norm = obj.normalize(tod, nsamples) - r = minimize( - mychi2, - method="TNC", - tol=1e-15, - x0=np.array([1.0]), - args=(obj, H_qubic, tod_norm, outputs, nsamples), - ) - - return r.x - - -def fill_hwp_position(nsamples, angle): - ang = np.zeros(nsamples) - nangle = len(angle) - x = int(nsamples / nangle) - - for ii, i in enumerate(angle): - ang[x * ii : x * (ii + 1)] = i - - return ang - - -def get_allA(nc, nf, npix, beta, nus, comp, active): - # Initialize arrays to store mixing matrix values - allA = np.zeros((beta.shape[0], nf, nc)) - allA_pix = np.zeros((npix, nf, nc)) - - # Loop through each element of beta to calculate mixing matrix - for i in range(beta.shape[0]): - allA[i] = get_mixingmatrix(beta[i], nus, comp, active) - - # Check if beta and npix are equal - if beta.shape[0] != npix: - # Upgrade resolution if not equal - for i in range(nf): - for j in range(nc): - allA_pix[:, i, j] = hp.ud_grade(allA[:, i, j], hp.npix2nside(npix)) - # Return upgraded mixing matrix - return allA_pix - else: - # Return original mixing matrix - return allA - - -def get_mixing_operator_verying_beta(nc, nside, A): - - # D = DenseBlockDiagonalOperator(A, broadcast='leftward', shapein=(3, 12*nside**2, nc)) - D = BlockDiagonalOperator( - [ - DenseBlockDiagonalOperator( - A, broadcast="rightward", shapein=(12 * nside**2, nc) - ), - DenseBlockDiagonalOperator( - A, broadcast="rightward", shapein=(12 * nside**2, nc) - ), - DenseBlockDiagonalOperator( - A, broadcast="rightward", shapein=(12 * nside**2, nc) - ), - ], - new_axisin=0, - new_axisout=2, - ) - return D - - -def get_mixingmatrix(beta, nus, comp, active=False): - A = mm.MixingMatrix(*comp) - if active: - i = A.components.index("COLine") - comp[i] = c.COLine(nu=comp[i].nu, active=True) - A = mm.MixingMatrix(*comp) - A_ev = A.evaluator(nus) - if beta.shape[0] == 0: - A_ev = A_ev() - else: - A_ev = A_ev(beta) - for ii in range(len(comp)): - # print('ii : ', ii) - if ii == i: - pass - else: - # print('to zero', ii) - A_ev[0, ii] = 0 - # print(i, A, A.shape) - - else: - A_ev = A.evaluator(nus) - if beta.shape[0] == 0: - A_ev = A_ev() - else: - A_ev = A_ev(beta) - try: - - i = A.components.index("COLine") - A_ev[0, i] = 0 - except: - pass - return A_ev - - -def get_mixing_operator(beta, nus, comp, nside, Amm=None, active=False): - """ - This function returns a mixing operator based on the input parameters: beta and nus. - The mixing operator is either a constant operator, or a varying operator depending on the input. - """ - - nc = len(comp) - if beta.shape[0] != 1 and beta.shape[0] != 2: - - nside_fit = hp.npix2nside(beta.shape[0]) - else: - nside_fit = 0 - - # Check if the length of beta is equal to the number of channels minus 1 - if nside_fit == 0: # Constant indice on the sky - # beta = np.mean(beta) - - # Get the mixing matrix - if Amm is None: - A = get_mixingmatrix(beta, nus, comp, active) - else: - A = np.array([Amm]).copy() - - # Get the shape of the mixing matrix - _, nc = A.shape - - # Create a ReshapeOperator - R = ReshapeOperator(((1, 12 * nside**2, 3)), ((12 * nside**2, 3))) - - # Create a DenseOperator with the first row of A - D = DenseOperator( - A[0], - broadcast="rightward", - shapein=(nc, 12 * nside**2, 3), - shapeout=(1, 12 * nside**2, 3), - ) - - else: # Varying indice on the sky - - # Get all A matrices nc, nf, npix, beta, nus, comp - A = get_allA(nc, 1, 12 * nside**2, beta, nus, comp, active) - - # Get the varying mixing operator - D = get_mixing_operator_verying_beta(nc, nside, A) - - return D - - -class PlanckAcquisition: - - def __init__(self, band, scene): - if band not in (30, 44, 70, 143, 217, 353): - raise ValueError("Invalid band '{}'.".format(band)) - self.scene = scene - self.band = band - self.nside = self.scene.nside - - if band == 30: - filename = "Variance_Planck30GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 44: - filename = "Variance_Planck44GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 70: - filename = "Variance_Planck70GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - elif band == 143: - filename = "Variance_Planck143GHz_Kcmb2_ns256.fits" - self.var = np.array(FitsArray(PATH + filename)) - sigma = 1e6 * np.sqrt(self.var) - elif band == 217: - filename = "Variance_Planck217GHz_Kcmb2_ns256.fits" - self.var = np.array(FitsArray(PATH + filename)) - sigma = 1e6 * np.sqrt(self.var) - else: - filename = "Variance_Planck353GHz_Kcmb2_ns256.fits" - var = np.zeros((12 * self.scene.nside**2, 3)) - for i in range(3): - var[:, i] = hp.ud_grade( - hp.fitsfunc.read_map(filename, field=i), self.scene.nside - ) - sigma = 1e6 * np.sqrt(var) - - if scene.kind == "I": - sigma = sigma[:, 0] - elif scene.kind == "QU": - sigma = sigma[:, :2] - if self.nside != 256: - sigma = np.array(hp.ud_grade(sigma.T, self.nside, power=2), copy=False).T - self.sigma = sigma - - def get_operator(self, nintegr=1): - Hp = DiagonalOperator( - np.ones((12 * self.nside**2, 3)), - broadcast="rightward", - shapein=self.scene.shape, - shapeout=np.ones((12 * self.nside**2, 3)).ravel().shape, - ) - - if nintegr == 1: - return Hp - - def get_invntt_operator(self, beam_correction=0, mask=None, seenpix=None): - - if beam_correction != 0: - factor = ( - 4 - * np.pi - * ( - np.rad2deg(beam_correction) - / 2.35 - / np.degrees(hp.nside2resol(self.scene.nside)) - ) - ** 2 - ) - # print(f'corrected by {factor}') - varnew = ( - hp.smoothing(self.var.T, fwhm=beam_correction / np.sqrt(2)) / factor - ) - self.sigma = 1e6 * np.sqrt(varnew.T) - - if mask is not None: - for i in range(3): - self.sigma[:, i] /= mask.copy() - # print(self.sigma[seenpix, i]) - # print(len(mask[seenpix]), mask[seenpix]) - # if seenpix is not None: - # myweight = 1 / (self.sigma[seenpix] ** 2) - # else: - myweight = 1 / (self.sigma**2) - - return DiagonalOperator(myweight, broadcast="leftward", shapein=myweight.shape) - - def get_noise(self, seed): - state = np.random.get_state() - np.random.seed(seed) - out = ( - np.random.standard_normal(np.ones((12 * self.nside**2, 3)).shape) - * self.sigma - ) - np.random.set_state(state) - return out - - def get_map(self, nu_min, nu_max, Nintegr, sky_config, d, fwhm=None): - - print(f"Integration from {nu_min:.2f} to {nu_max:.2f} GHz with {Nintegr} steps") - obj = QubicIntegrated(d, Nsub=Nintegr, Nrec=Nintegr) - if Nintegr == 1: - allnus = np.array([np.mean([nu_min, nu_max])]) - else: - allnus = np.linspace(nu_min, nu_max, Nintegr) - m = obj.get_PySM_maps(sky_config, nus=allnus) - - if fwhm is None: - fwhm = [0] * Nintegr - - for i in range(Nintegr): - C = HealpixConvolutionGaussianOperator(fwhm=fwhm) - m[i] = C(m[i]) - - return np.mean(m, axis=0) - - -class QubicFullBandSystematic(QubicPolyAcquisition): - - def __init__(self, d, Nsub, Nrec=1, comp=[], kind="DB", nu_co=None, H=None): - - # if Nsub % 2 != 0: - # raise TypeError('Nsub should not be odd') - - if Nrec > 1 and len(comp) > 0: - raise TypeError("For Components Map-Making, there must be Nrec = 1") - - self.d = d - self.comp = comp - self.Nsub = int(Nsub / 2) - self.kind = kind - self.Nrec = Nrec - self.nu_co = nu_co - - if self.kind == "DB" and self.Nrec == 1 and len(self.comp) == 0: - raise TypeError("Dual band instrument can not reconstruct one band") - - if self.kind == "DB": - self.number_FP = 2 - elif self.kind == "UWB": - self.number_FP = 1 - - # self.relative_bandwidth = relative_bandwidth - - if Nsub < 2: - raise TypeError("You should use Nsub > 1") - - self.d["nf_sub"] = self.Nsub - self.d["nf_recon"] = 1 - - self.nu_down = 131.25 - self.nu_up = 247.5 - - self.nu_average = np.mean(np.array([self.nu_down, self.nu_up])) - self.d["filter_nu"] = self.nu_average * 1e9 - - _, allnus150, _, _, _, _ = qubic.compute_freq( - 150, Nfreq=self.Nsub - 1, relative_bandwidth=0.25 - ) - _, allnus220, _, _, _, _ = qubic.compute_freq( - 220, Nfreq=self.Nsub - 1, relative_bandwidth=0.25 - ) - self.allnus = np.array(list(allnus150) + list(allnus220)) - # print(self.nu_average, self.allnus) - - self.multiinstrument = instr.QubicMultibandInstrument(self.d) - # print(self.multiinstrument.subinstruments) - # stop - self.sampling = qubic.get_pointing(self.d) - self.scene = qubic.QubicScene(self.d) - - self.Proj = [] - self.subacqs = [] - self.allfwhm = np.zeros(len(self.multiinstrument)) - self.H = [] - - for i in range(len(self.multiinstrument)): - self.allfwhm[i] = ( - self.multiinstrument[i].get_convolution_peak_operator().fwhm - ) - - # if nu_co is not None: - # #dmono = self.d.copy() - # self.d['filter_nu'] = nu_co# * 1e9 - # sampling = qubic.get_pointing(self.d) - # scene = qubic.QubicScene(self.d) - # instrument_co = instr.QubicInstrument(self.d) - # self.multiinstrument.subinstruments += [instrument_co] - # self.Proj += [QubicAcquisition(self.multiinstrument[-1], sampling, scene, self.d).get_projection_operator()] - # self.subacqs += [QubicAcquisition(self.multiinstrument[-1], sampling, scene, self.d)] - - QubicPolyAcquisition.__init__( - self, self.multiinstrument, self.sampling, self.scene, self.d - ) - - if H is None: - self.H = [self.subacqs[i].get_operator() for i in range(len(self.subacqs))] - else: - self.H = H - - if self.d["comm"] is not None: - self.mpidist = self.H[0].operands[-1] - - self.ndets = len(self.subacqs[0].instrument) - self.nsamples = len(self.sampling) - - self.coverage = self.subacqs[0].get_coverage() - - def get_hwp_operator(self, angle_hwp): - """ - Return the rotation matrix for the half-wave plate. - - """ - return Rotation3dOperator( - "X", -4 * angle_hwp, degrees=True, shapein=self.Proj[0].shapeout - ) - - def get_components_operator(self, beta, nu, active=False): - - if beta.shape[0] != 1 and beta.shape[0] != 2: - r = ReshapeOperator( - (12 * self.scene.nside**2, 1, 3), (12 * self.scene.nside**2, 3) - ) - else: - r = ReshapeOperator( - (1, 12 * self.scene.nside**2, 3), (12 * self.scene.nside**2, 3) - ) - return r * get_mixing_operator( - beta, nu, self.comp, self.scene.nside, Amm=None, active=active - ) - - def sum_over_band(self, h, gain=None): - op_sum = [] - f = int(2 * self.Nsub / self.Nrec) - - ### Frequency Map-Making - if len(self.comp) == 0: - h = np.array(h) - for irec in range(self.Nrec): - imin = irec * f - imax = (irec + 1) * f - 1 - op_sum += [ - h[ - (self.allnus >= self.allnus[imin]) - * (self.allnus <= self.allnus[imax]) - ].sum(axis=0) - ] - - if self.kind == "UWB": - return BlockRowOperator(op_sum, new_axisin=0) - else: - if self.Nrec > 2: - return BlockDiagonalOperator( - [ - BlockRowOperator( - op_sum[: int(self.Nrec / 2)], new_axisin=0 - ), - BlockRowOperator( - op_sum[int(self.Nrec / 2) : int(self.Nrec)], - new_axisin=0, - ), - ], - axisout=0, - ) - else: - return ReshapeOperator( - (2, self.ndets, self.nsamples), (2 * self.ndets, self.nsamples) - ) * BlockDiagonalOperator( - [ - BlockRowOperator( - op_sum[: int(self.Nrec / 2)], new_axisin=0 - ), - BlockRowOperator( - op_sum[int(self.Nrec / 2) : int(self.Nrec)], - new_axisin=0, - ), - ], - new_axisin=0, - ) - - ### Components Map-Making - else: - if self.kind == "UWB": - if gain is None: - G = DiagonalOperator( - np.ones(self.ndets), - broadcast="rightward", - shapein=(self.ndets, self.nsamples), - ) - else: - G = DiagonalOperator( - gain, broadcast="rightward", shapein=(self.ndets, self.nsamples) - ) - return G * AdditionOperator(h) - else: - if gain is None: - G150 = DiagonalOperator( - np.ones(self.ndets), - broadcast="rightward", - shapein=(self.ndets, self.nsamples), - ) - G220 = DiagonalOperator( - np.ones(self.ndets), - broadcast="rightward", - shapein=(self.ndets, self.nsamples), - ) - else: - G150 = DiagonalOperator( - gain[:, 0], - broadcast="rightward", - shapein=(self.ndets, self.nsamples), - ) - G220 = DiagonalOperator( - gain[:, 1], - broadcast="rightward", - shapein=(self.ndets, self.nsamples), - ) - return BlockColumnOperator( - [ - G150 * AdditionOperator(h[: int(self.Nsub)]), - G220 * AdditionOperator(h[int(self.Nsub) :]), - ], - axisout=0, - ) - - def get_operator(self, beta=None, angle_hwp=None, gain=None, fwhm=None): - - self.operator = [] - - if angle_hwp is None: - angle_hwp = self.sampling.angle_hwp - else: - angle_hwp = fill_hwp_position(self.Proj[0].shapeout[1], angle_hwp) - - # G = DiagonalOperator(g, broadcast='rightward', shapein=(myqubic.Ndets, myqubic.Nsamples)) - for isub in range(self.Nsub * 2): - - if beta is None: - Acomp = IdentityOperator() - else: - - Acomp = self.get_components_operator( - beta, np.array([self.allnus[isub]]) - ) - - # distribution = self.subacqs[isub].get_distribution_operator() - # temp = self.subacqs[isub].get_unit_conversion_operator() - # aperture = self.subacqs[isub].get_aperture_integration_operator() - # filter = self.subacqs[isub].get_filter_operator() - # projection = self.Proj[isub] - # hwp = self.get_hwp_operator(angle_hwp) - # hwp = self.subacqs[isub].get_hwp_operator() - # polarizer = self.subacqs[isub].get_polarizer_operator() - # integ = self.subacqs[isub].get_detector_integration_operator() - # trans = self.multiinstrument[isub].get_transmission_operator() - # trans_atm = self.subacqs[isub].scene.atmosphere.transmission - # response = ConvolutionTruncatedExponentialOperator(self.d['detector_tau']) - # response = self.subacqs[isub].get_detector_response_operator() - # response.dtypein=float - # response.dtypeout=float - if fwhm is None: - convolution = IdentityOperator() - else: - convolution = HealpixConvolutionGaussianOperator(fwhm=fwhm[isub]) - with rule_manager(inplace=True): - hi = CompositionOperator([self.H[isub], convolution, Acomp]) - - self.operator.append(hi) - - if self.nu_co is not None: - - if beta is None: - Acomp = IdentityOperator() - else: - Acomp = self.get_components_operator( - beta, np.array([self.nu_co]), active=True - ) - distribution = self.subacqs[-1].get_distribution_operator() - temp = self.subacqs[-1].get_unit_conversion_operator() - aperture = self.subacqs[-1].get_aperture_integration_operator() - filter = self.subacqs[-1].get_filter_operator() - projection = self.Proj[-1] - # hwp = self.get_hwp_operator(angle_hwp) - hwp = self.subacqs[-1].get_hwp_operator() - polarizer = self.subacqs[-1].get_polarizer_operator() - integ = self.subacqs[-1].get_detector_integration_operator() - trans = self.multiinstrument[-1].get_transmission_operator() - trans_atm = self.subacqs[-1].scene.atmosphere.transmission - response = self.subacqs[-1].get_detector_response_operator() - if fwhm is None: - convolution = IdentityOperator() - else: - convolution = HealpixConvolutionGaussianOperator(fwhm=fwhm[isub]) - with rule_manager(inplace=True): - hi = CompositionOperator( - [ - HomothetyOperator(1 / (2 * self.Nsub)), - response, - trans_atm, - trans, - integ, - polarizer, - (hwp * projection), - filter, - aperture, - temp, - distribution, - convolution, - Acomp, - ] - ) - - self.operator.append(hi) - - H = self.sum_over_band(self.operator, gain=gain) - - return H - - def get_invntt_operator(self): - """ - - Method to compute the inverse noise covariance matrix in time-domain. - - """ - d150 = self.d.copy() - d150["filter_nu"] = 150 * 1e9 - ins150 = instr.QubicInstrument(d150) - - d220 = self.d.copy() - d220["filter_nu"] = 220 * 1e9 - ins220 = instr.QubicInstrument(d220) - - subacq150 = QubicAcquisition(ins150, self.sampling, self.scene, d150) - subacq220 = QubicAcquisition(ins220, self.sampling, self.scene, d220) - if self.kind == "DB": - - invn150 = subacq150.get_invntt_operator(det_noise=True, photon_noise=True) - invn220 = subacq220.get_invntt_operator(det_noise=True, photon_noise=True) - - return BlockDiagonalOperator([invn150, invn220], axisout=0) - - elif self.kind == "UWB": - - invn150 = subacq150.get_invntt_operator(det_noise=True, photon_noise=True) - invn220 = subacq220.get_invntt_operator(det_noise=False, photon_noise=True) - - return invn150 + invn220 - - def get_PySM_maps(self, config, r=0, Alens=1): - """ - - Read configuration dictionary which contains every components adn the model. - - Example : d = {'cmb':42, 'dust':'d0', 'synchrotron':'s0'} - - The CMB is randomly generated fram specific seed. Astrophysical foregrounds come from PySM 3. - - """ - - allmaps = np.zeros((len(config), 12 * self.scene.nside**2, 3)) - ell = np.arange(2 * self.scene.nside - 1) - mycls = give_cl_cmb(r=r, Alens=Alens) - - for k, kconf in enumerate(config.keys()): - if kconf == "cmb": - - np.random.seed(config[kconf]) - cmb = hp.synfast(mycls, self.scene.nside, verbose=False, new=True).T - - allmaps[k] = cmb.copy() - - elif kconf == "dust": - - nu0 = self.comp[k].__dict__["_fixed_params"]["nu0"] - sky = pysm3.Sky( - nside=self.scene.nside, - preset_strings=[config[kconf]], - output_unit="uK_CMB", - ) - # sky.components[0].mbb_index = hp.ud_grade(sky.components[0].mbb_index, 8) - sky.components[0].mbb_temperature = ( - 20 * sky.components[0].mbb_temperature.unit - ) - # sky.components[0].mbb_index = hp.ud_grade(np.array(sky.components[0].mbb_index), 8) - mydust = np.array( - sky.get_emission(nu0 * u.GHz, None).T - * utils.bandpass_unit_conversion(nu0 * u.GHz, None, u.uK_CMB) - ) - - allmaps[k] = mydust.copy() - elif kconf == "synchrotron": - nu0 = self.comp[k].__dict__["_fixed_params"]["nu0"] - sky = pysm3.Sky( - nside=self.scene.nside, - preset_strings=[config[kconf]], - output_unit="uK_CMB", - ) - mysync = np.array( - sky.get_emission(nu0 * u.GHz, None).T - * utils.bandpass_unit_conversion(nu0 * u.GHz, None, u.uK_CMB) - ) - allmaps[k] = mysync.copy() - elif kconf == "coline": - - # sky = pysm3.Sky(nside=self.nside, preset_strings=['co2'], output_unit="uK_CMB") - # nu0 = sky.components[0].line_frequency['21'].value - - # myco=np.array(sky.get_emission(nu0 * u.GHz, None).T * utils.bandpass_unit_conversion(nu0*u.GHz, None, u.uK_CMB)) - # 10 is for reproduce the PsYM template - m = hp.ud_grade( - hp.read_map(path_to_data + "CO_line.fits") * 10, self.scene.nside - ) - # print(self.nside) - mP = polarized_I(m, self.scene.nside) - # print(mP.shape) - myco = np.zeros((12 * self.scene.nside**2, 3)) - myco[:, 0] = m.copy() - myco[:, 1:] = mP.T.copy() - allmaps[k] = myco.copy() - else: - raise TypeError("Choose right foreground model (d0, s0, ...)") - - # if len(nus) == 1: - # allmaps = allmaps[0].copy() - - return allmaps - - -class OtherDataParametric: - - def __init__(self, nus, nside, comp, nintegr=2): - - if nintegr == 1: - raise TypeError("The integration of external data should be greater than 1") - - self.nintegr = nintegr - pkl_file = open(path_to_data + "AllDataSet_Components_MapMaking.pkl", "rb") - dataset = pickle.load(pkl_file) - self.dataset = dataset - - self.nus = nus - self.nside = nside - self.npix = 12 * self.nside**2 - self.bw = [] - for ii, i in enumerate(self.nus): - self.bw.append(self.dataset["bw{}".format(i)]) - - self.fwhm = arcmin2rad(create_array("fwhm", self.nus, self.nside)) - self.comp = comp - self.nc = len(self.comp) - - if nintegr == 1: - self.allnus = self.nus - else: - self.allnus = [] - for inu, nu in enumerate(self.nus): - self.allnus += list( - np.linspace( - nu - self.bw[inu] / 2, nu + self.bw[inu] / 2, self.nintegr - ) - ) - self.allnus = np.array(self.allnus) - ### Compute all external nus - - def get_invntt_operator(self, fact=None, mask=None): - # Create an empty array to store the values of sigma - allsigma = np.array([]) - - # Iterate through the frequency values - for inu, nu in enumerate(self.nus): - # Determine the scaling factor for the noise - if fact is None: - f = 1 - else: - f = fact[inu] - - # Get the noise value for the current frequency and upsample to the desired nside - sigma = f * hp.ud_grade(self.dataset["noise{}".format(nu)].T, self.nside).T - - if mask is not None: - sigma /= np.array([mask, mask, mask]).T - - # Append the noise value to the list of all sigmas - allsigma = np.append(allsigma, sigma.ravel()) - - # Flatten the list of sigmas and create a diagonal operator - allsigma = allsigma.ravel().copy() - invN = DiagonalOperator( - 1 / allsigma**2, - broadcast="leftward", - shapein=(3 * len(self.nus) * 12 * self.nside**2), - ) - - # Create reshape operator and apply it to the diagonal operator - R = ReshapeOperator(invN.shapeout, invN.shape[0]) - return R(invN(R.T)) - - def get_operator(self, beta, convolution, myfwhm=None, nu_co=None, comm=None): - R2tod = ReshapeOperator((12 * self.nside**2, 3), (3 * 12 * self.nside**2)) - if beta.shape[0] <= 2: - R = ReshapeOperator((1, 12 * self.nside**2, 3), (12 * self.nside**2, 3)) - else: - R = ReshapeOperator((12 * self.nside**2, 1, 3), (12 * self.nside**2, 3)) - - Operator = [] - - k = 0 - for ii, i in enumerate(self.nus): - ope_i = [] - for j in range(self.nintegr): - - if convolution: - if myfwhm is not None: - fwhm = myfwhm[ii] - else: - fwhm = self.fwhm[ii] - else: - fwhm = 0 - # fwhm = fwhm_max if convolution and fwhm_max is not None else (self.fwhm[ii] if convolution else 0) - C = HealpixConvolutionGaussianOperator(fwhm=fwhm) - - D = get_mixing_operator( - beta, - np.array([self.allnus[k]]), - comp=self.comp, - nside=self.nside, - active=False, - ) - ope_i += [C * R * D] - - k += 1 - - if i == 217: - # print('co line') - if nu_co is not None: - Dco = get_mixing_operator( - beta, - np.array([nu_co]), - comp=self.comp, - nside=self.nside, - active=True, - ) - ope_i += [C * R * Dco] - - if comm is not None: - Operator.append(comm * R2tod(AdditionOperator(ope_i) / self.nintegr)) - else: - Operator.append(R2tod(AdditionOperator(ope_i) / self.nintegr)) - - return BlockColumnOperator(Operator, axisout=0) - - def get_noise(self, seed=None, fact=None, seenpix=None): - state = np.random.get_state() - np.random.seed(seed) - out = np.zeros((len(self.nus), self.npix, 3)) - R2tod = ReshapeOperator( - (len(self.nus), 12 * self.nside**2, 3), - (len(self.nus) * 3 * 12 * self.nside**2), - ) - for inu, nu in enumerate(self.nus): - if fact is None: - f = 1 - else: - f = fact[inu] - sigma = f * hp.ud_grade(self.dataset["noise{}".format(nu)].T, self.nside).T - out[inu] = np.random.standard_normal((self.npix, 3)) * sigma - if seenpix is not None: - out[:, seenpix, :] = 0 - np.random.set_state(state) - return R2tod(out) - - -class JointAcquisitionFrequencyMapMaking: - - def __init__(self, d, kind, Nrec, Nsub, H=None): - - self.kind = kind - self.d = d - self.Nrec = Nrec - self.Nsub = Nsub - - self.qubic = QubicFullBandSystematic( - self.d, comp=[], Nsub=self.Nsub, Nrec=self.Nrec, kind=self.kind, H=H - ) - self.scene = self.qubic.scene - self.pl143 = PlanckAcquisition(143, self.scene) - self.pl217 = PlanckAcquisition(217, self.scene) - - def get_operator(self, angle_hwp=None, fwhm=None, external_data=True): - - if self.kind == "QubicIntegrated": # Classic intrument - - # Get QUBIC operator - H_qubic = self.qubic.get_operator(convolution=convolution, myfwhm=myfwhm) - R_qubic = ReshapeOperator( - H_qubic.operands[0].shapeout, H_qubic.operands[0].shape[0] - ) - if external_data == False: - return R_qubic(H_qubic) - else: - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), - (12 * self.qubic.scene.nside**2 * 3), - ) - - # Create an empty list to hold operators - full_operator = [] - - if self.Nrec == 1: - Operator = [R_qubic(H_qubic), R_planck] - return BlockColumnOperator(Operator, axisout=0) - - else: - - for irec in range(self.Nrec): - Operator = [R_qubic(H_qubic.operands[irec])] - for jrec in range(self.Nrec): - if irec == jrec: - Operator += [R_planck] - else: - Operator += [R_planck * 0] - - full_operator += [BlockColumnOperator(Operator, axisout=0)] - - return BlockRowOperator(full_operator, new_axisin=0) - - elif self.kind == "UWB": # WideBand intrument - - # Get QUBIC operator - H_qubic = self.qubic.get_operator(angle_hwp=angle_hwp, fwhm=fwhm) - R_qubic = ReshapeOperator( - H_qubic.operands[0].shapeout, H_qubic.operands[0].shape[0] - ) - if external_data == False: - return R_qubic(H_qubic) - else: - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), - (12 * self.qubic.scene.nside**2 * 3), - ) - if self.Nrec == 1: - operator = [R_qubic(H_qubic), R_planck, R_planck] - return BlockColumnOperator(operator, axisout=0) - else: - full_operator = [] - for irec in range(self.Nrec): - operator = [R_qubic(H_qubic.operands[irec])] - for jrec in range(self.Nrec): - if irec == jrec: - operator += [R_planck] - else: - operator += [R_planck * 0] - full_operator += [BlockColumnOperator(operator, axisout=0)] - - return BlockRowOperator(full_operator, new_axisin=0) - - elif self.kind == "DB": - # Get QUBIC operator - if self.Nrec == 2: - H_qubic = self.qubic.get_operator( - angle_hwp=angle_hwp, fwhm=fwhm - ).operands[1] - else: - H_qubic = self.qubic.get_operator(angle_hwp=angle_hwp, fwhm=fwhm) - if external_data == False: - R_qubic = ReshapeOperator(H_qubic.shapeout, H_qubic.shape[0]) - return R_qubic * H_qubic - else: - R_qubic = ReshapeOperator( - H_qubic.operands[0].shapeout, H_qubic.operands[0].shape[0] - ) - R_planck = ReshapeOperator( - (12 * self.qubic.scene.nside**2, 3), - (12 * self.qubic.scene.nside**2 * 3), - ) - opefull = [] - for ifp in range(2): - ope_per_fp = [] - for irec in range(int(self.Nrec / 2)): - if self.Nrec > 2: - operator = [R_qubic * H_qubic.operands[ifp].operands[irec]] - else: - operator = [R_qubic * H_qubic.operands[ifp]] - for jrec in range(int(self.Nrec / 2)): - if irec == jrec: - operator += [R_planck] - else: - operator += [R_planck * 0] - ope_per_fp += [BlockColumnOperator(operator, axisout=0)] - opefull += [BlockRowOperator(ope_per_fp, new_axisin=0)] - if self.Nrec == 2: - h = BlockDiagonalOperator(opefull, new_axisin=0) - _r = ReshapeOperator( - (h.shapeout[0], h.shapeout[1]), (h.shapeout[0] * h.shapeout[1]) - ) - return _r * h - else: - return BlockDiagonalOperator(opefull, axisout=0) - - else: - raise TypeError(f"Instrument type {self.kind} is not recognize") - - def get_invntt_operator( - self, - weight_planck=1, - beam_correction=None, - seenpix=None, - mask=None, - external_data=True, - ): - - if beam_correction is None: - beam_correction = [0] * self.Nrec - - if self.kind == "UWB": - invn_q = self.qubic.get_invntt_operator() - R = ReshapeOperator(invn_q.shapeout, invn_q.shape[0]) - if external_data == False: - return R(invn_q(R.T)) - else: - invn_q = [R(invn_q(R.T))] - - invntt_planck143 = weight_planck * self.pl143.get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - invntt_planck217 = weight_planck * self.pl217.get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - R_planck = ReshapeOperator( - invntt_planck143.shapeout, invntt_planck143.shape[0] - ) - invN_143 = R_planck(invntt_planck143(R_planck.T)) - invN_217 = R_planck(invntt_planck217(R_planck.T)) - if self.Nrec == 1: - invNe = [invN_143, invN_217] - else: - invNe = [invN_143] * int(self.Nrec / 2) + [invN_217] * int( - self.Nrec / 2 - ) - invN = invn_q + invNe - return BlockDiagonalOperator(invN, axisout=0) - - elif self.kind == "DB": - - invn_q_150 = self.qubic.get_invntt_operator().operands[0] - invn_q_220 = self.qubic.get_invntt_operator().operands[1] - R = ReshapeOperator(invn_q_150.shapeout, invn_q_150.shape[0]) - - invntt_planck143 = weight_planck * self.pl143.get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - invntt_planck217 = weight_planck * self.pl217.get_invntt_operator( - beam_correction=beam_correction[0], mask=mask, seenpix=seenpix - ) - R_planck = ReshapeOperator( - invntt_planck143.shapeout, invntt_planck143.shape[0] - ) - invN_143 = R_planck(invntt_planck143(R_planck.T)) - invN_217 = R_planck(invntt_planck217(R_planck.T)) - invN = [R(invn_q_150(R.T))] - if external_data: - for i in range(int(self.Nrec / 2)): - invN += [R_planck(invntt_planck143(R_planck.T))] # , - # R(invn_q_220(R.T)), R_planck(invntt_planck217(R_planck.T))] - - invN += [R(invn_q_220(R.T))] - if external_data: - for i in range(int(self.Nrec / 2)): - invN += [R_planck(invntt_planck217(R_planck.T))] - - return BlockDiagonalOperator(invN, axisout=0) - - """ - elif self.kind == 'QubicIntegrated': - if beam_correction is None : - beam_correction = [0]*self.Nrec - else: - if type(beam_correction) is not list: - raise TypeError('Beam correction should be a list') - if len(beam_correction) != self.Nrec: - raise TypeError('List of beam correction should have Nrec elements') - - - invntt_qubic = self.qubic.get_invntt_operator(det_noise, photon_noise) - R_qubic = ReshapeOperator(invntt_qubic.shapeout, invntt_qubic.shape[0]) - Operator = [R_qubic(invntt_qubic(R_qubic.T))] - - for i in range(self.Nrec): - invntt_planck = weight_planck*self.planck.get_invntt_operator(beam_correction=beam_correction[i], mask=mask, seenpix=seenpix) - R_planck = ReshapeOperator(invntt_planck.shapeout, invntt_planck.shape[0]) - Operator.append(R_planck(invntt_planck(R_planck.T))) - - return BlockDiagonalOperator(Operator, axisout=0) - """ - - -class JointAcquisitionComponentsMapMaking: - - def __init__(self, d, kind, comp, Nsub, nus_external, nintegr, nu_co=None): - - self.kind = kind - self.d = d - self.Nsub = Nsub - self.comp = comp - self.nus_external = nus_external - self.nintegr = nintegr - # self.qubic = qubic - self.qubic = QubicFullBandSystematic( - self.d, comp=self.comp, Nsub=self.Nsub, Nrec=1, kind=self.kind, nu_co=nu_co - ) - self.scene = self.qubic.scene - self.external = OtherDataParametric( - self.nus_external, self.scene.nside, self.comp, self.nintegr - ) - - def get_operator(self, beta, gain=None, fwhm=None, nu_co=None): - - Hq = self.qubic.get_operator(beta=beta, gain=gain, fwhm=fwhm) - Rq = ReshapeOperator(Hq.shapeout, (Hq.shapeout[0] * Hq.shapeout[1])) - try: - mpidist = self.qubic.mpidist - except: - mpidist = None - # mpidist = None - # print(mpidist) - # stop - He = self.external.get_operator( - beta=beta, convolution=False, comm=mpidist, nu_co=nu_co - ) - - return BlockColumnOperator([Rq * Hq, He], axisout=0) - - def get_invntt_operator(self, fact=None, mask=None): - - invNq = self.qubic.get_invntt_operator() - R = ReshapeOperator(invNq.shapeout, invNq.shape[0]) - invNe = self.external.get_invntt_operator(fact=fact, mask=mask) - - return BlockDiagonalOperator([R(invNq(R.T)), invNe], axisout=0) diff --git a/src/FMM/pipeline.py b/src/FMM/pipeline.py index 162c683..728f0f5 100644 --- a/src/FMM/pipeline.py +++ b/src/FMM/pipeline.py @@ -6,7 +6,6 @@ import numpy as np import qubic import yaml -from scipy.optimize import minimize from pysimulators.interfaces.healpy import HealpixConvolutionGaussianOperator ### Local packages @@ -401,6 +400,7 @@ def get_random_value(self): seed = self.comm.bcast(seed, root=0) return seed + def _get_scalar_acquisition_operator(self): """ Function that will compute "scalar acquisition operatord" by applying the acquisition operators to a vector full of ones. @@ -419,7 +419,7 @@ def _get_scalar_acquisition_operator(self): acquisition_operators[freq](vector_ones) ) return scalar_acquisition_operators - + def get_convolution(self): """QUBIC resolutions. @@ -440,10 +440,10 @@ def get_convolution(self): fwhm_in = np.zeros(self.params["QUBIC"]["nsub_in"]) fwhm_out = np.zeros(self.params["QUBIC"]["nsub_out"]) fwhm_rec = np.zeros(self.params["QUBIC"]["nrec"]) - + ### FWHMs during map-making if self.params["QUBIC"]["convolution_in"]: - fwhm_in = self.joint_tod.qubic.allfwhm.copy() + fwhm_in = self.joint.qubic.allfwhm.copy() if self.params["QUBIC"]["convolution_out"]: fwhm_out = np.array([]) for irec in range(self.params["QUBIC"]["nrec"]): @@ -451,12 +451,12 @@ def get_convolution(self): fwhm_out, np.sqrt( self.joint.qubic.allfwhm[ - irec * self.fsub_out : (irec + 1) * self.fsub_out + irec * self.fsub : (irec + 1) * self.fsub ] ** 2 - np.min( self.joint.qubic.allfwhm[ - irec * self.fsub_out : (irec + 1) * self.fsub_out + irec * self.fsub : (irec + 1) * self.fsub ] ) ** 2 @@ -474,7 +474,7 @@ def get_convolution(self): fwhm_rec, np.min( self.joint.qubic.allfwhm[ - irec * self.fsub_out : (irec + 1) * self.fsub_out + irec * self.fsub : (irec + 1) * self.fsub ] ), ) @@ -520,14 +520,18 @@ def get_convolution(self): # Compute the expected resolution fwhm_rec = np.append( - fwhm_rec, np.sum(numerator_fwhm) / np.sum(denominator_fwhm) + fwhm_rec, + np.mean( + self.joint.qubic.allfwhm[ + irec * self.fsub : (irec + 1) * self.fsub + ] + ), ) - # Compute the expected frequency - fraction = np.sum(numerator_nus) / np.sum(denominator_nus) - x0 = self.nus_Q[irec] - corrected_nu = minimize(fun, x0) - self.nus_Q[irec] = corrected_nu["x"] + else: + fwhm_rec = np.array([]) + for irec in range(self.params["QUBIC"]["nrec"]): + fwhm_rec = np.append(fwhm_rec, 0) if self.rank == 0: print(f"FWHM for TOD generation : {fwhm_in}") diff --git a/src/running_scripts/__init__.py b/src/running_scripts/__init__.py deleted file mode 100644 index 2f50844..0000000 --- a/src/running_scripts/__init__.py +++ /dev/null @@ -1 +0,0 @@ -print(1111) \ No newline at end of file diff --git a/src/running_scripts/run_cmm.py b/src/running_scripts/run_cmm.py deleted file mode 100644 index 4c1415e..0000000 --- a/src/running_scripts/run_cmm.py +++ /dev/null @@ -1,16 +0,0 @@ -import sys - -from pyoperators import * - -from CMM.pipeline import Pipeline - -seed_noise = int(sys.argv[1]) - -### MPI common arguments -comm = MPI.COMM_WORLD - -if __name__ == "__main__": - - pipeline = Pipeline(comm, 1, seed_noise) - - pipeline.main() diff --git a/src/running_scripts/run_cmm.sh b/src/running_scripts/run_cmm.sh deleted file mode 100644 index 74c4016..0000000 --- a/src/running_scripts/run_cmm.sh +++ /dev/null @@ -1,20 +0,0 @@ -#!/bin/bash - -#SBATCH --job-name=FMM - -# we ask for n MPI tasks with N cores each on c nodes - -#SBATCH --partition=htc -#SBATCH --nodes=1 # c -#SBATCH --ntasks-per-node=1 # n -#SBATCH --cpus-per-task=4 # N -#SBATCH --mem=60G -#SBATCH --time=3-00:00:00 -#SBATCH --output=mulitple_jobs_%j.log -#SBATCH --array=1-500 - -export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK} - -module load mpich - -mpirun -np $SLURM_NTASKS python run_cmm.py $1 diff --git a/src/running_scripts/run_fit_fmm.py b/src/running_scripts/run_fit_fmm.py deleted file mode 100644 index 8fc1e57..0000000 --- a/src/running_scripts/run_fit_fmm.py +++ /dev/null @@ -1,45 +0,0 @@ -import os - -import matplotlib.pyplot as plt -import numpy as np -from multiprocess import Pool -from pyoperators import MPI -from schwimmbad import MPIPool - -from lib.Qfit import FitEllSpace -from lib.Qfoldertools import MergeAllFiles -from lib.Qspectra_component import SkySpectra - -comm = MPI.COMM_WORLD - -### Concatenate all realizations -files = MergeAllFiles( - "/Users/mregnier/Desktop/git/Pipeline/src/FMM/CMBDUST_nrec2_new_code/spectrum/" -) - -nus_index = np.array([True, True, False, False, False, False, False, False, True]) -NBINS = 16 - -ell = files._reads_one_file(0, "ell")[:NBINS] -nus = files._reads_one_file(0, "nus")[nus_index] - -BBsignal = np.mean(files._reads_all_files("Dls"), axis=0)[:, nus_index, :NBINS][ - nus_index, :, :NBINS -] -BBnoise = files._reads_all_files("Nl")[:, :, nus_index, :NBINS][:, nus_index, :, :NBINS] -BBsignal -= np.mean(BBnoise, axis=0) - -sky = SkySpectra(ell, nus) -fit = FitEllSpace(ell, BBsignal, BBnoise, model=sky.model) - -samples, samples_flat = fit.run(300, 10, discard=200, comm=comm) - -plt.figure() -plt.plot(samples[..., 0], "-k", alpha=0.1) -plt.axhline(0) -plt.show() - -print() -print(f"Average : {np.mean(samples_flat, axis=0)}") -print(f"Error : {np.std(samples_flat, axis=0)}") -print() diff --git a/src/running_scripts/run_fmm.py b/src/running_scripts/run_fmm.py deleted file mode 100644 index ae3c1a3..0000000 --- a/src/running_scripts/run_fmm.py +++ /dev/null @@ -1,28 +0,0 @@ -#import sys -#from pyoperators import * -#import FMM -import running_scripts -stop -from ..FMM.pipeline import PipelineEnd2End - -stop - -#from .FMM.pipeline import PipelineEnd2End - - -stop -try: - file = str(sys.argv[1]) -except IndexError: - file = None - -if __name__ == "__main__": - - ### Common MPI arguments - comm = MPI.COMM_WORLD - - ### Initialization - pipeline = PipelineEnd2End(comm) - - ### Execution - pipeline.main(specific_file=file) diff --git a/src/running_scripts/run_fmm.sh b/src/running_scripts/run_fmm.sh deleted file mode 100644 index fd59745..0000000 --- a/src/running_scripts/run_fmm.sh +++ /dev/null @@ -1,20 +0,0 @@ -#!/bin/bash - -#SBATCH --job-name=FMM - -# we ask for n MPI tasks with N cores each on c nodes - -#SBATCH --partition=htc -#SBATCH --nodes=1 # c -#SBATCH --ntasks-per-node=1 # n -#SBATCH --cpus-per-task=4 # N -#SBATCH --mem=60G -#SBATCH --time=3-00:00:00 -#SBATCH --output=mulitple_jobs_%j.log -#SBATCH --array=1-500 - -export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK} - -module load mpich - -mpirun -np $SLURM_NTASKS python src/run_fmm.py \ No newline at end of file diff --git a/src/running_scripts/run_spectra_cmm.py b/src/running_scripts/run_spectra_cmm.py deleted file mode 100644 index 7bcad1c..0000000 --- a/src/running_scripts/run_spectra_cmm.py +++ /dev/null @@ -1 +0,0 @@ -from CMM.spectrum.get_spectra import Spectra