forked from shintadono/laszip.net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IntegerCompressor.cs
421 lines (380 loc) · 10.7 KB
/
IntegerCompressor.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
//===============================================================================
//
// FILE: integercompressor.cs
//
// CONTENTS:
//
// This compressor provides three different contexts for encoding integer
// numbers whose range may lie anywhere between 1 and 31 bits, which is
// specified with the SetPrecision function.
//
// The compressor encodes two things:
//
// (1) the number k of miss-predicted low-order bits and
// (2) the k-bit number that corrects the missprediction
//
// The k-bit number is usually coded broken in two chunks. The highest
// bits are compressed using an arithmetic range table. The lower bits
// are stored raw without predicive coding. How many of the higher bits
// are compressed can be specified with bits_high. The default is 8.
//
// PROGRAMMERS:
//
// [email protected] - http://rapidlasso.com
//
// COPYRIGHT:
//
// (c) 2005-2014, martin isenburg, rapidlasso - tools to catch reality
// (c) of the C# port 2014 by Shinta <[email protected]>
//
// This is free software; you can redistribute and/or modify it under the
// terms of the GNU Lesser General Licence as published by the Free Software
// Foundation. See the COPYING file for more information.
//
// This software is distributed WITHOUT ANY WARRANTY and without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//
// CHANGE HISTORY: omitted for easier Copy&Paste (pls see the original)
//
//===============================================================================
using System.Diagnostics;
namespace laszip.net
{
class IntegerCompressor
{
// Constructor & Deconstructor
public IntegerCompressor(ArithmeticEncoder enc, uint bits=16, uint contexts=1, uint bits_high=8, uint range=0)
{
Debug.Assert(enc!=null);
this.enc=enc;
this.dec=null;
Init(bits, contexts, bits_high, range);
}
public IntegerCompressor(ArithmeticDecoder dec, uint bits=16, uint contexts=1, uint bits_high=8, uint range=0)
{
Debug.Assert(dec!=null);
this.enc=null;
this.dec=dec;
Init(bits, contexts, bits_high, range);
}
void Init(uint bits=16, uint contexts=1, uint bits_high=8, uint range=0)
{
this.bits=bits;
this.contexts=contexts;
this.bits_high=bits_high;
this.range=range;
if(range!=0) // the corrector's significant bits and range
{
corr_bits=0;
corr_range=range;
while(range!=0)
{
range=range>>1;
corr_bits++;
}
if(corr_range==(1u<<((int)corr_bits-1)))
{
corr_bits--;
}
// the corrector must fall into this interval
corr_min=-((int)(corr_range/2));
corr_max=(int)(corr_min+corr_range-1);
}
else if(bits!=0&&bits<32)
{
corr_bits=bits;
corr_range=1u<<(int)bits;
// the corrector must fall into this interval
corr_min=-((int)(corr_range/2));
corr_max=(int)(corr_min+corr_range-1);
}
else
{
corr_bits=32;
corr_range=0;
// the corrector must fall into this interval
corr_min=int.MinValue;
corr_max=int.MaxValue;
}
k=0;
mBits=null;
mCorrector=null;
}
// Manage Compressor
public void initCompressor()
{
Debug.Assert(enc!=null);
// maybe create the models
if(mBits==null)
{
mBits=new ArithmeticModel[contexts];
for(uint i=0; i<contexts; i++)
{
mBits[i]=enc.createSymbolModel(corr_bits+1);
}
#if !COMPRESS_ONLY_K
mCorrector=new ArithmeticModel[corr_bits+1];
mCorrectorBit=enc.createBitModel();
for(uint i=1; i<=corr_bits; i++)
{
if(i<=bits_high)
{
mCorrector[i]=enc.createSymbolModel(1u<<(int)i);
}
else
{
mCorrector[i]=enc.createSymbolModel(1u<<(int)bits_high);
}
}
#endif
}
// certainly init the models
for(uint i=0; i<contexts; i++)
{
enc.initSymbolModel(mBits[i]);
}
#if !COMPRESS_ONLY_K
enc.initBitModel(mCorrectorBit);
for(uint i=1; i<=corr_bits; i++)
{
enc.initSymbolModel(mCorrector[i]);
}
#endif
}
public void compress(int pred, int real, uint context=0)
{
Debug.Assert(enc!=null);
// the corrector will be within the interval [ - (corr_range - 1) ... + (corr_range - 1) ]
int corr=real-pred;
// we fold the corrector into the interval [ corr_min ... corr_max ]
if(corr<corr_min) corr+=(int)corr_range;
else if(corr>corr_max) corr-=(int)corr_range;
writeCorrector(corr, mBits[context]);
}
// Manage Decompressor
public void initDecompressor()
{
Debug.Assert(dec!=null);
// maybe create the models
if(mBits==null)
{
mBits=new ArithmeticModel[contexts];
for(uint i=0; i<contexts; i++)
{
mBits[i]=dec.createSymbolModel(corr_bits+1);
}
#if !COMPRESS_ONLY_K
mCorrector=new ArithmeticModel[corr_bits+1];
mCorrectorBit=dec.createBitModel();
for(uint i=1; i<=corr_bits; i++)
{
if(i<=bits_high)
{
mCorrector[i]=dec.createSymbolModel(1u<<(int)i);
}
else
{
mCorrector[i]=dec.createSymbolModel(1u<<(int)bits_high);
}
}
#endif
}
// certainly init the models
for(uint i=0; i<contexts; i++)
{
dec.initSymbolModel(mBits[i]);
}
#if !COMPRESS_ONLY_K
dec.initBitModel(mCorrectorBit);
for(uint i=1; i<=corr_bits; i++)
{
dec.initSymbolModel(mCorrector[i]);
}
#endif
}
public int decompress(int pred, uint context=0)
{
Debug.Assert(dec!=null);
int real=pred+readCorrector(mBits[context]);
if(real<0) real+=(int)corr_range;
else if((uint)(real)>=corr_range) real-=(int)corr_range;
return real;
}
// Get the k corrector bits from the last compress/decompress call
public uint getK() { return k; }
void writeCorrector(int c, ArithmeticModel model)
{
// find the tighest interval [ - (2^k - 1) ... + (2^k) ] that contains c
k=0;
// do this by checking the absolute value of c (adjusted for the case that c is 2^k)
uint c1=(uint)(c<=0?-c:c-1);
// this loop could be replaced with more efficient code
while(c1!=0)
{
c1=c1>>1;
k=k+1;
}
// the number k is between 0 and corr_bits and describes the interval the corrector falls into
// we can compress the exact location of c within this interval using k bits
enc.encodeSymbol(model, k);
#if COMPRESS_ONLY_K
if(k!=0) // then c is either smaller than 0 or bigger than 1
{
Debug.Assert((c!=0)&&(c!=1));
if(k<32)
{
// translate the corrector c into the k-bit interval [ 0 ... 2^k - 1 ]
if(c<0) // then c is in the interval [ - (2^k - 1) ... - (2^(k-1)) ]
{
// so we translate c into the interval [ 0 ... + 2^(k-1) - 1 ] by adding (2^k - 1)
enc.writeBits((int)k, (uint)(c+((1<<(int)k)-1)));
}
else // then c is in the interval [ 2^(k-1) + 1 ... 2^k ]
{
// so we translate c into the interval [ 2^(k-1) ... + 2^k - 1 ] by subtracting 1
enc.writeBits((int)k, (uint)(c-1));
}
}
}
else // then c is 0 or 1
{
Debug.Assert((c==0)||(c==1));
enc.writeBit((uint)c);
}
#else // COMPRESS_ONLY_K
if(k!=0) // then c is either smaller than 0 or bigger than 1
{
Debug.Assert((c!=0)&&(c!=1));
if(k<32)
{
// translate the corrector c into the k-bit interval [ 0 ... 2^k - 1 ]
if(c<0) // then c is in the interval [ - (2^k - 1) ... - (2^(k-1)) ]
{
// so we translate c into the interval [ 0 ... + 2^(k-1) - 1 ] by adding (2^k - 1)
c+=((1<<(int)k)-1);
}
else // then c is in the interval [ 2^(k-1) + 1 ... 2^k ]
{
// so we translate c into the interval [ 2^(k-1) ... + 2^k - 1 ] by subtracting 1
c-=1;
}
if(k<=bits_high) // for small k we code the interval in one step
{
// compress c with the range coder
enc.encodeSymbol(mCorrector[k], (uint)c);
}
else // for larger k we need to code the interval in two steps
{
// figure out how many lower bits there are
int k1=(int)k-(int)bits_high;
// c1 represents the lowest k-bits_high+1 bits
c1=(uint)(c&((1<<k1)-1));
// c represents the highest bits_high bits
c=c>>k1;
// compress the higher bits using a context table
enc.encodeSymbol(mCorrector[k], (uint)c);
// store the lower k1 bits raw
enc.writeBits(k1, c1);
}
}
}
else // then c is 0 or 1
{
Debug.Assert((c==0)||(c==1));
enc.encodeBit(mCorrectorBit, (uint)c);
}
#endif // COMPRESS_ONLY_K
}
int readCorrector(ArithmeticModel model)
{
int c;
// decode within which interval the corrector is falling
k=dec.decodeSymbol(model);
// decode the exact location of the corrector within the interval
#if COMPRESS_ONLY_K
if(k!=0) // then c is either smaller than 0 or bigger than 1
{
if(k<32)
{
c=(int)dec.readBits(k);
if(c>=(1<<((int)k-1))) // if c is in the interval [ 2^(k-1) ... + 2^k - 1 ]
{
// so we translate c back into the interval [ 2^(k-1) + 1 ... 2^k ] by adding 1
c+=1;
}
else // otherwise c is in the interval [ 0 ... + 2^(k-1) - 1 ]
{
// so we translate c back into the interval [ - (2^k - 1) ... - (2^(k-1)) ] by subtracting (2^k - 1)
c-=((1<<(int)k)-1);
}
}
else
{
c=corr_min;
}
}
else // then c is either 0 or 1
{
c=(int)dec.readBit();
}
#else // COMPRESS_ONLY_K
if(k!=0) // then c is either smaller than 0 or bigger than 1
{
if(k<32)
{
if(k<=bits_high) // for small k we can do this in one step
{
// decompress c with the range coder
c=(int)dec.decodeSymbol(mCorrector[k]);
}
else
{
// for larger k we need to do this in two steps
uint k1=k-bits_high;
// decompress higher bits with table
c=(int)dec.decodeSymbol(mCorrector[k]);
// read lower bits raw
int c1=(int)dec.readBits(k1);
// put the corrector back together
c=(c<<(int)k1)|c1;
}
// translate c back into its correct interval
if(c>=(1<<((int)k-1))) // if c is in the interval [ 2^(k-1) ... + 2^k - 1 ]
{
// so we translate c back into the interval [ 2^(k-1) + 1 ... 2^k ] by adding 1
c+=1;
}
else // otherwise c is in the interval [ 0 ... + 2^(k-1) - 1 ]
{
// so we translate c back into the interval [ - (2^k - 1) ... - (2^(k-1)) ] by subtracting (2^k - 1)
c-=((1<<(int)k)-1);
}
}
else
{
c=corr_min;
}
}
else // then c is either 0 or 1
{
c=(int)dec.decodeBit(mCorrectorBit);
}
#endif // COMPRESS_ONLY_K
return c;
}
uint k;
uint contexts;
uint bits_high;
uint bits;
uint range;
uint corr_bits;
uint corr_range;
int corr_min;
int corr_max;
ArithmeticEncoder enc;
ArithmeticDecoder dec;
ArithmeticModel[] mBits;
ArithmeticModel[] mCorrector; // mCorrector[0] will always be null
ArithmeticBitModel mCorrectorBit;
}
}