-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides.qmd
119 lines (94 loc) · 2.09 KB
/
slides.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
title: MD Slides
author: Yangyunchen Liu
data: March 29, 2024
format:
revealjs:
theme: simple
logo: theme/logos/duke-foot.png
css: theme/duke.css
slide-number: true
show-slide-number: all
width: 1920
height: 1080
bibliography: ./refs/bib.bib
institute: Duke University
highlight-style: atom-one
# title page
title-slide-attributes:
data-background-image: theme/logos/duke.png
data-background-size: 15%
data-background-position: 50% 50%
---
# H1 header
## H2 header
### H3 header
#### H4 header
##### H5 header
###### H6 header
# Layout
## Columns
::: columns
:::: {.column width=50%}
* Point 1
* Point 2
* d
::::
:::: {.column width=50%}
![Some picture](./media/png.png)
::::
:::
## Show movie
![my cell simulation](./media/single_np4.mp4)
# Syntax
## Math blocks
\begin{equation}
\begin{aligned}
\dot{x} &= \sigma(y-x) \\
\dot{y} &= \rho x - y - xz \\
\dot{z} &= -\beta z + xy
\end{aligned}
\end{equation}
## Code blocks
```{.r .scrollable}
#| fig-height: 8
#| fig-align: center
#| fig-cap: A random walk with noise
library(ggplot2)
theme_set(theme_classic(base_size = 25))
library(latex2exp)
library(patchwork)
set.seed(42)
Y0 <- 10
wt <- rnorm(100, sd = 1)
vt <- rnorm(100, sd = 3)
dat <- data.frame(
t = 1:100,
Y = Y0 + cumsum(wt) + vt,
vt = vt,
wt = wt
)
p1 <- dat |>
ggplot(aes(t,Y)) +
geom_line() +
geom_line(aes(y=Y0+cumsum(wt)), lty=1, color='darkgreen') +
labs(y=TeX('$Y_t$')) +
theme(axis.title.x.bottom = element_blank())
p2 <- dat |>
ggplot(aes(t,vt)) +
geom_point(color='red', size=.5) +
geom_linerange(aes(ymin=0,ymax=vt), color='red') +
geom_hline(yintercept = 0, alpha=.5) +
labs(y=TeX('$v_t$')) +
theme(axis.title.x.bottom = element_blank())
p3 <- dat |>
ggplot(aes(t,wt)) +
geom_segment(aes(x=t,xend=t,y=0,yend=wt), color='darkgreen',
arrow = arrow(length = unit(0.2, "cm"))) +
geom_hline(yintercept = 0, alpha=.5) +
labs(y=TeX('$w_t$'))
p1/p2/p3
```
## Citation
Here is a reference paper [@gardiner2015discrete], and another [@van2010particlebased]
## Reference