diff --git a/source/base.js b/source/base.js index b2dcc88e6d..a703248840 100644 --- a/source/base.js +++ b/source/base.js @@ -575,6 +575,503 @@ base.StreamReader = class { } }; +base.Tensor = class { + + constructor(tensor) { + this._tensor = tensor; + this.name = tensor.name || ''; + this.encoding = tensor.encoding; + this.encoding = this.encoding === '' || this.encoding === undefined ? '<' : this.encoding; + this.type = tensor.type; + this.layout = tensor.type.layout; + this.stride = tensor.stride; + base.Tensor.dataTypes = base.Tensor.dataTypeSizes || new Map([ + ['boolean', 1], + ['qint8', 1], ['qint16', 2], ['qint32', 4], + ['quint8', 1], ['quint16', 2], ['quint32', 4], + ['xint8', 1], + ['int8', 1], ['int16', 2], ['int32', 4], ['int64', 8], + ['uint8', 1], ['uint16', 2], ['uint32', 4,], ['uint64', 8], + ['float16', 2], ['float32', 4], ['float64', 8], ['bfloat16', 2], + ['complex64', 8], ['complex128', 16], + ['float8e4m3fn', 1], ['float8e4m3fnuz', 1], ['float8e5m2', 1], ['float8e5m2fnuz', 1] + ]); + } + + get values() { + this._read(); + return this._values; + } + + get indices() { + this._read(); + return this._indices; + } + + get data() { + this._read(); + return this._data; + } + + get metrics() { + return this._tensor.metrics; + } + + get empty() { + switch (this.layout) { + case 'sparse': + case 'sparse.coo': { + return !this.values || this.indices || this.values.values === null || this.values.values.length === 0; + } + default: { + switch (this.encoding) { + case '<': + case '>': + return !(Array.isArray(this.data) || this.data instanceof Uint8Array || this.data instanceof Int8Array) || this.data.length === 0; + case '|': + return !(Array.isArray(this.values) || ArrayBuffer.isView(this.values)) || this.values.length === 0; + default: + throw new Error(`Unsupported tensor encoding '${this.encoding}'.`); + } + } + } + } + + get value() { + const context = this._context(); + context.limit = Number.MAX_SAFE_INTEGER; + switch (context.encoding) { + case '<': + case '>': { + return this._decodeData(context, 0, 0); + } + case '|': { + return this._decodeValues(context, 0, 0); + } + default: { + throw new Error(`Unsupported tensor encoding '${context.encoding}'.`); + } + } + } + + toString() { + const context = this._context(); + context.limit = 10000; + switch (context.encoding) { + case '<': + case '>': { + const value = this._decodeData(context, 0, 0); + return base.Tensor._stringify(value, '', ' '); + } + case '|': { + const value = this._decodeValues(context, 0, 0); + return base.Tensor._stringify(value, '', ' '); + } + default: { + throw new Error(`Unsupported tensor encoding '${context.encoding}'.`); + } + } + } + + _context() { + this._read(); + if (this.encoding !== '<' && this.encoding !== '>' && this.encoding !== '|') { + throw new Error(`Tensor encoding '${this.encoding}' is not supported.`); + } + if (this.layout && (this.layout !== 'sparse' && this.layout !== 'sparse.coo')) { + throw new Error(`Tensor layout '${this.layout}' is not supported.`); + } + const dataType = this.type.dataType; + const context = {}; + context.encoding = this.encoding; + context.dimensions = this.type.shape.dimensions.map((value) => typeof value === 'bigint' ? value.toNumber() : value); + context.dataType = dataType; + const shape = context.dimensions; + context.stride = this.stride; + if (!Array.isArray(context.stride)) { + context.stride = new Array(shape.length); + let value = 1; + for (let i = shape.length - 1; i >= 0; i--) { + context.stride[i] = value; + value *= shape[i]; + } + } + switch (this.layout) { + case 'sparse': { + const indices = new base.Tensor(this.indices).value; + const values = new base.Tensor(this.values).value; + context.data = this._decodeSparse(dataType, context.dimensions, indices, values); + context.encoding = '|'; + break; + } + case 'sparse.coo': { + const values = new base.Tensor(this.values).value; + const data = new base.Tensor(this.indices).value; + const dimensions = context.dimensions.length; + let stride = 1; + const strides = context.dimensions.slice().reverse().map((dim) => { + const value = stride; + stride *= dim; + return value; + }).reverse(); + const indices = new Uint32Array(values.length); + for (let i = 0; i < dimensions; i++) { + const stride = strides[i]; + const dimension = data[i]; + for (let i = 0; i < indices.length; i++) { + indices[i] += dimension[i].toNumber() * stride; + } + } + context.data = this._decodeSparse(dataType, context.dimensions, indices, values); + context.encoding = '|'; + break; + } + default: { + switch (this.encoding) { + case '<': + case '>': { + context.data = (this.data instanceof Uint8Array || this.data instanceof Int8Array) ? this.data : this.data.peek(); + context.view = new DataView(context.data.buffer, context.data.byteOffset, context.data.byteLength); + if (base.Tensor.dataTypes.has(dataType)) { + const itemsize = base.Tensor.dataTypes.get(dataType); + const length = context.data.length; + const stride = context.stride; + if (length < (itemsize * shape.reduce((a, v) => a * v, 1))) { + const max = stride.reduce((a, v, i) => v > stride[i] ? i : a, 0); + if (length !== (itemsize * stride[max] * shape[max])) { + throw new Error('Invalid tensor data size.'); + } + } + context.itemsize = itemsize; + context.stride = stride.map((v) => v * itemsize); + } else if (dataType.startsWith('uint') && !isNaN(parseInt(dataType.substring(4), 10))) { + context.dataType = 'uint'; + context.bits = parseInt(dataType.substring(4), 10); + context.itemsize = 1; + } else if (dataType.startsWith('int') && !isNaN(parseInt(dataType.substring(3), 10))) { + context.dataType = 'int'; + context.bits = parseInt(dataType.substring(3), 10); + context.itemsize = 1; + } else { + throw new Error(`Tensor data type '${dataType}' is not implemented.`); + } + break; + } + case '|': { + context.data = this.values; + if (!base.Tensor.dataTypes.has(dataType) && dataType !== 'string' && dataType !== 'object') { + throw new Error(`Tensor data type '${dataType}' is not implemented.`); + } + const size = context.dimensions.reduce((a, v) => a * v, 1); + if (size !== this.values.length) { + throw new Error('Invalid tensor data length.'); + } + break; + } + default: { + throw new base.Tensor(`Unsupported tensor encoding '${this.encoding}'.`); + } + } + } + } + context.index = 0; + context.count = 0; + return context; + } + + _decodeSparse(dataType, dimensions, indices, values) { + const size = dimensions.reduce((a, b) => a * b, 1); + const array = new Array(size); + switch (dataType) { + case 'boolean': + array.fill(false); + break; + default: + array.fill(0); + break; + } + if (indices.length > 0) { + if (Object.prototype.hasOwnProperty.call(indices[0], 'low')) { + for (let i = 0; i < indices.length; i++) { + const index = indices[i].toNumber(); + array[index] = values[i]; + } + } else { + for (let i = 0; i < indices.length; i++) { + array[indices[i]] = values[i]; + } + } + } + return array; + } + + _decodeData(context, dimension, offset) { + const results = []; + const shape = context.dimensions.length === 0 ? [1] : context.dimensions; + const size = shape[dimension]; + const dataType = context.dataType; + const view = context.view; + const stride = context.stride[dimension]; + if (dimension === shape.length - 1) { + const ellipsis = (context.count + size) > context.limit; + const length = ellipsis ? context.limit - context.count : size; + const max = offset + (length * context.itemsize); + switch (dataType) { + case 'boolean': + for (; offset < max; offset += stride) { + results.push(view.getUint8(offset) !== 0); + } + break; + case 'qint8': + case 'xint8': + case 'int8': + for (; offset < max; offset += stride) { + results.push(view.getInt8(offset)); + } + break; + case 'qint16': + case 'int16': + for (; offset < max; offset += stride) { + results.push(view.getInt16(offset, this._littleEndian)); + } + break; + case 'qint32': + case 'int32': + for (; offset < max; offset += stride) { + results.push(view.getInt32(offset, this._littleEndian)); + } + break; + case 'int64': + for (; offset < max; offset += stride) { + results.push(view.getBigInt64(offset, this._littleEndian)); + } + break; + case 'int': + for (; offset < max; offset += stride) { + results.push(view.getIntBits(offset, context.bits, this._littleEndian)); + } + break; + case 'quint8': + case 'uint8': + for (; offset < max; offset += stride) { + results.push(view.getUint8(offset)); + } + break; + case 'quint16': + case 'uint16': + for (; offset < max; offset += stride) { + results.push(view.getUint16(offset, true)); + } + break; + case 'quint32': + case 'uint32': + for (; offset < max; offset += stride) { + results.push(view.getUint32(offset, true)); + } + break; + case 'uint64': + for (; offset < max; offset += stride) { + results.push(view.getBigUint64(offset, true)); + } + break; + case 'uint': + for (; offset < max; offset += stride) { + results.push(view.getUintBits(offset, context.bits, this._littleEndian)); + } + break; + case 'float16': + for (; offset < max; offset += stride) { + results.push(view.getFloat16(offset, this._littleEndian)); + } + break; + case 'float32': + for (; offset < max; offset += stride) { + results.push(view.getFloat32(offset, this._littleEndian)); + } + break; + case 'float64': + for (; offset < max; offset += stride) { + results.push(view.getFloat64(offset, this._littleEndian)); + } + break; + case 'bfloat16': + for (; offset < max; offset += stride) { + results.push(view.getBfloat16(offset, this._littleEndian)); + } + break; + case 'complex64': + for (; offset < max; offset += stride) { + results.push(view.getComplex64(offset, this._littleEndian)); + } + break; + case 'complex128': + for (; offset < max; offset += stride) { + results.push(view.getComplex128(offset, this._littleEndian)); + } + break; + case 'float8e4m3fn': + for (; offset < max; offset += stride) { + results.push(view.getFloat8e4m3(offset, true, false)); + } + break; + case 'float8e4m3fnuz': + for (; offset < max; offset += stride) { + results.push(view.getFloat8e4m3(offset, true, true)); + } + break; + case 'float8e5m2': + for (; offset < max; offset += stride) { + results.push(view.getFloat8e5m2(offset, false, false)); + } + break; + case 'float8e5m2fnuz': + for (; offset < max; offset += stride) { + results.push(view.getFloat8e5m2(offset, true, true)); + } + break; + default: + throw new Error(`Unsupported tensor data type '${dataType}'.`); + } + context.count += length; + if (ellipsis) { + results.push('...'); + } + } else { + for (let j = 0; j < size; j++) { + if (context.count >= context.limit) { + results.push('...'); + return results; + } + const nextOffset = offset + (j * stride); + results.push(this._decodeData(context, dimension + 1, nextOffset)); + } + } + if (context.dimensions.length === 0) { + return results[0]; + } + return results; + } + + _decodeValues(context, dimension, position) { + const results = []; + const shape = (context.dimensions.length === 0) ? [1] : context.dimensions; + const size = shape[dimension]; + const dataType = context.dataType; + const stride = context.stride[dimension]; + if (dimension === shape.length - 1) { + const ellipsis = (context.count + size) > context.limit; + const length = ellipsis ? context.limit - context.count : size; + const data = context.data; + for (let i = 0; i < length; i++) { + if (context.count > context.limit) { + results.push('...'); + return results; + } + switch (dataType) { + case 'boolean': + results.push(data[position] === 0 ? false : true); + break; + default: + results.push(data[position]); + break; + } + position += stride; + context.count++; + } + } else { + for (let i = 0; i < size; i++) { + if (context.count >= context.limit) { + results.push('...'); + return results; + } + const nextPosition = position + (i * stride); + results.push(this._decodeValues(context, dimension + 1, nextPosition)); + } + } + if (context.dimensions.length === 0) { + return results[0]; + } + return results; + } + + static _stringify(value, indentation, indent) { + if (Array.isArray(value)) { + const result = []; + result.push(`${indentation}[`); + const items = value.map((item) => base.Tensor._stringify(item, indentation + indent, indent)); + if (items.length > 0) { + result.push(items.join(',\n')); + } + result.push(`${indentation}]`); + return result.join('\n'); + } + if (value === null) { + return `${indentation}null`; + } + switch (typeof value) { + case 'boolean': + return indentation + value.toString(); + case 'string': + return `${indentation}"${value}"`; + case 'number': + if (value === Infinity) { + return `${indentation}Infinity`; + } + if (value === -Infinity) { + return `${indentation}-Infinity`; + } + if (isNaN(value)) { + return `${indentation}NaN`; + } + return indentation + value.toString(); + case 'bigint': + return indentation + value.toString(); + default: + if (value && value.toString) { + return indentation + value.toString(); + } + return `${indentation}(undefined)`; + } + } + + _read() { + if (this._values === undefined) { + this._values = null; + switch (this.encoding) { + case undefined: + case '<': { + this._data = this._tensor.values; + this._littleEndian = true; + break; + } + case '>': { + this._data = this._tensor.values; + this._littleEndian = false; + break; + } + case '|': { + this._values = this._tensor.values; + break; + } + default: { + throw new Error(`Unsupported tensor encoding '${this._encoding}'.`); + } + } + switch (this._layout) { + case 'sparse': + case 'sparse.coo': { + this._indices = this._tensor.indices; + this._values = this._tensor.values; + break; + } + default: { + break; + } + } + } + } +}; + base.Telemetry = class { constructor(window) { @@ -752,5 +1249,6 @@ export const Complex64 = base.Complex64; export const Complex128 = base.Complex128; export const BinaryStream = base.BinaryStream; export const BinaryReader = base.BinaryReader; +export const Tensor = base.Tensor; export const Telemetry = base.Telemetry; export const Metadata = base.Metadata; diff --git a/source/view.js b/source/view.js index b7ecafb062..42404250bd 100644 --- a/source/view.js +++ b/source/view.js @@ -13,6 +13,7 @@ import * as grapher from './grapher.js'; const view = {}; const markdown = {}; +const metrics = {}; view.View = class { @@ -1755,7 +1756,7 @@ view.Graph = class extends grapher.Graph { } createTensor(value) { - const obj = new view.Value(this, value); + const obj = new view.Tensor(this, value); this._table.set(value, obj); } @@ -2029,8 +2030,7 @@ view.Node = class extends grapher.Node { shape = `\u3008${type.shape.dimensions.map((d) => (d !== null && d !== undefined) ? d : '?').join('\u00D7')}\u3009`; if (type.shape.dimensions.length === 0 && value.initializer) { try { - const initializer = value.initializer; - const tensor = new view.Tensor(initializer); + const tensor = new base.Tensor(value.initializer); const encoding = tensor.encoding; if ((encoding === '<' || encoding === '>' || encoding === '|') && !tensor.empty && tensor.type.dataType !== '?') { shape = tensor.toString(); @@ -2256,9 +2256,7 @@ view.Value = class { } activate() { - if (this.value && this.value.initializer) { - this.context.view.showTensorProperties(this.value); - } else if (this.value && this.from && Array.isArray(this.to)) { + if (this.value && this.from && Array.isArray(this.to)) { const from = this.from.value; const to = this.to.map((node) => node.value); this.context.view.showConnectionProperties(this.value, from, to); @@ -2266,6 +2264,25 @@ view.Value = class { } }; +view.Tensor = class { + + constructor(context, value) { + this.context = context; + this.value = value; + } + + select() { + return []; + } + + deselect() { + } + + activate() { + this.context.view.showTensorProperties(this.value); + } +}; + view.Edge = class extends grapher.Edge { constructor(from, to) { @@ -2557,7 +2574,7 @@ view.NodeSidebar = class extends view.ObjectSidebar { let value = null; switch (attribute.type) { case 'tensor': { - value = new view.ValueView(this._view, { type: attribute.value.type, initializer: attribute.value }, ''); + value = new view.ValueView(this._view, { type: attribute.value.type, initializer: attribute.value }, '', true); break; } case 'tensor[]': { @@ -2805,7 +2822,7 @@ view.ArgumentView = class extends view.Control { view.ValueView = class extends view.Control { - constructor(context, value, name) { + constructor(context, value, name, attribute) { super(context); this._value = value; this._count = 2; @@ -2831,7 +2848,7 @@ view.ValueView = class extends view.Control { }); this._element.appendChild(this._expander); } - if (initializer) { + if (initializer && !attribute) { const element = this.createElement('div', 'sidebar-item-value-button'); element.setAttribute('title', 'Show Tensor'); element.innerHTML = ``; @@ -2937,8 +2954,11 @@ view.ValueView = class extends view.Control { if (Array.isArray(stride) && stride.length > 0) { this._code('stride', stride.join(',')); } - // const tensor = new view.TensorView(this._view, initializer); - // tensor.tensor(this._element); + const tensor = new view.TensorView(this._view, initializer); + const content = tensor.content(this._element); + const line = this.createElement('div', 'sidebar-item-value-line-border'); + line.appendChild(content); + this._element.appendChild(line); } } catch (error) { super.error(error, false); @@ -2979,9 +2999,10 @@ view.ValueView = class extends view.Control { view.TensorView = class extends view.Control { - constructor(context, value) { + constructor(context, value, tensor) { super(context); this._value = value; + this._tensor = tensor || new base.Tensor(value); } render() { @@ -3013,7 +3034,8 @@ view.TensorView = class extends view.Control { this._expander.innerText = '-'; try { this._container.innerHTML = ''; - this._tensor(this._element); + const content = this.content(this._element); + this._container.appendChild(content); this._element.appendChild(this._container); } catch (error) { this.error(error, false); @@ -3026,22 +3048,22 @@ view.TensorView = class extends view.Control { } } - _tensor(element) { + content(element) { + const content = this.createElement('pre'); const value = this._value; - const code = this.createElement('pre'); - const tensor = new view.Tensor(value); + const tensor = this._tensor; if (tensor.encoding !== '<' && tensor.encoding !== '>' && tensor.encoding !== '|') { - code.innerHTML = `Tensor encoding '${tensor.layout}' is not implemented.`; + content.innerHTML = `Tensor encoding '${tensor.layout}' is not implemented.`; } else if (tensor.layout && (tensor.layout !== 'sparse' && tensor.layout !== 'sparse.coo')) { - code.innerHTML = `Tensor layout '${tensor.layout}' is not implemented.`; + content.innerHTML = `Tensor layout '${tensor.layout}' is not implemented.`; } else if (tensor.empty) { - code.innerHTML = 'Tensor data is empty.'; + content.innerHTML = 'Tensor data is empty.'; } else if (tensor.type && tensor.type.dataType === '?') { - code.innerHTML = 'Tensor data type is not defined.'; + content.innerHTML = 'Tensor data type is not defined.'; } else if (tensor.type && !tensor.type.shape) { - code.innerHTML = 'Tensor shape is not defined.'; + content.innerHTML = 'Tensor shape is not defined.'; } else { - code.innerHTML = tensor.toString(); + content.innerHTML = tensor.toString(); if (this._host.save && value.type.shape && value.type.shape.dimensions && value.type.shape.dimensions.length > 0) { @@ -3053,7 +3075,7 @@ view.TensorView = class extends view.Control { element.appendChild(this._saveButton); } } - this._container.appendChild(code); + return content; } error(error, fatal) { @@ -3064,7 +3086,7 @@ view.TensorView = class extends view.Control { } async export() { - const tensor = new view.Tensor(this._value); + const tensor = this._tensor; const defaultPath = tensor.name ? tensor.name.split('/').join('_').split(':').join('_').split('.').join('_') : 'tensor'; const file = await this._host.save('NumPy Array', 'npy', defaultPath); if (file) { @@ -3213,15 +3235,16 @@ view.ConnectionSidebar = class extends view.ObjectSidebar { view.TensorSidebar = class extends view.ObjectSidebar { - constructor(context, value) { + constructor(context, value, tensor) { super(context); this._value = value; + this._tensor = tensor || new base.Tensor(value.initializer); } render() { const value = this._value; const tensor = value.initializer; - const [name] = tensor && tensor.name ? tensor : value.name.split('\n'); + const name = tensor && tensor.name ? tensor.name : value.name.split('\n')[0]; if (name) { this.addProperty('name', name); } @@ -3247,10 +3270,6 @@ view.TensorSidebar = class extends view.ObjectSidebar { this.addProperty('layout', layout.replace('.', ' ')); } } - const identifier = this._value.identifier; - if (identifier !== undefined) { - this.addProperty('identifier', tensor.identifier); - } const location = tensor.location; if (location) { this.addProperty('location', tensor.location); @@ -3259,9 +3278,8 @@ view.TensorSidebar = class extends view.ObjectSidebar { if (Array.isArray(stride) && stride.length > 0) { this.addProperty('stride', stride.join(','), 'code'); } - const value = new view.TensorView(this._view, tensor); + const value = new view.TensorView(this._view, tensor, this._tensor); this.add('value', value); - const metadata = tensor.metadata; if (Array.isArray(metadata) && metadata.length > 0) { this.addHeader('Metadata'); @@ -3271,12 +3289,14 @@ view.TensorSidebar = class extends view.ObjectSidebar { } } /* - // TODO + // Metrics if (value.initializer) { - const tensor = new view.Tensor(value.initializer); if (!tensor.empty) { + if (!this._metrics) { + this._metrics = new metrics.Tensor(this._tensor); + } this.addHeader('Metrics'); - const metrics = tensor.metrics; + const metrics = this._metrics.metrics; for (const metric of metrics) { const value = metric.type === 'percentage' ? `${(metric.value * 100).toFixed(1)}%` : metric.value; this.addProperty(metric.name, [value]); @@ -3750,545 +3770,6 @@ view.Argument = class { } }; -view.Tensor = class { - - constructor(tensor) { - this._tensor = tensor; - this._type = tensor.type; - this._layout = tensor.type.layout; - this._stride = tensor.stride; - view.Tensor.dataTypes = view.Tensor.dataTypeSizes || new Map([ - ['boolean', 1], - ['qint8', 1], ['qint16', 2], ['qint32', 4], - ['quint8', 1], ['quint16', 2], ['quint32', 4], - ['xint8', 1], - ['int8', 1], ['int16', 2], ['int32', 4], ['int64', 8], - ['uint8', 1], ['uint16', 2], ['uint32', 4,], ['uint64', 8], - ['float16', 2], ['float32', 4], ['float64', 8], ['bfloat16', 2], - ['complex64', 8], ['complex128', 16], - ['float8e4m3fn', 1], ['float8e4m3fnuz', 1], ['float8e5m2', 1], ['float8e5m2fnuz', 1] - ]); - } - - get type() { - return this._type; - } - - get layout() { - return this._layout; - } - - get stride() { - return this._stride; - } - - get encoding() { - this._read(); - return this._encoding; - } - - get values() { - this._read(); - return this._values; - } - - get indices() { - this._read(); - return this._indices; - } - - get data() { - this._read(); - return this._data; - } - - get empty() { - switch (this._layout) { - case 'sparse': - case 'sparse.coo': { - return !this.values || this.indices || this.values.values === null || this.values.values.length === 0; - } - default: { - switch (this._encoding) { - case '<': - case '>': - return !(Array.isArray(this.data) || this.data instanceof Uint8Array || this.data instanceof Int8Array) || this.data.length === 0; - case '|': - return !(Array.isArray(this.values) || ArrayBuffer.isView(this.values)) || this.values.length === 0; - default: - throw new Error(`Unsupported tensor encoding '${this._encoding}'.`); - } - } - } - } - - get value() { - const context = this._context(); - context.limit = Number.MAX_SAFE_INTEGER; - switch (context.encoding) { - case '<': - case '>': { - return this._decodeData(context, 0, 0); - } - case '|': { - return this._decodeValues(context, 0, 0); - } - default: { - throw new Error(`Unsupported tensor encoding '${context.encoding}'.`); - } - } - } - - toString() { - const context = this._context(); - context.limit = 10000; - switch (context.encoding) { - case '<': - case '>': { - const value = this._decodeData(context, 0, 0); - return view.Tensor._stringify(value, '', ' '); - } - case '|': { - const value = this._decodeValues(context, 0, 0); - return view.Tensor._stringify(value, '', ' '); - } - default: { - throw new Error(`Unsupported tensor encoding '${context.encoding}'.`); - } - } - } - - _context() { - if (this._encoding !== '<' && this._encoding !== '>' && this._encoding !== '|') { - throw new Error(`Tensor encoding '${this._encoding}' is not supported.`); - } - if (this._layout && (this._layout !== 'sparse' && this._layout !== 'sparse.coo')) { - throw new Error(`Tensor layout '${this._layout}' is not supported.`); - } - const dataType = this._type.dataType; - const context = {}; - context.encoding = this._encoding; - context.dimensions = this._type.shape.dimensions.map((value) => typeof value === 'bigint' ? value.toNumber() : value); - context.dataType = dataType; - const shape = context.dimensions; - context.stride = this._stride; - if (!Array.isArray(context.stride)) { - context.stride = new Array(shape.length); - let value = 1; - for (let i = shape.length - 1; i >= 0; i--) { - context.stride[i] = value; - value *= shape[i]; - } - } - switch (this._layout) { - case 'sparse': { - const indices = new view.Tensor(this._indices).value; - const values = new view.Tensor(this._values).value; - context.data = this._decodeSparse(dataType, context.dimensions, indices, values); - context.encoding = '|'; - break; - } - case 'sparse.coo': { - const values = new view.Tensor(this._values).value; - const data = new view.Tensor(this._indices).value; - const dimensions = context.dimensions.length; - let stride = 1; - const strides = context.dimensions.slice().reverse().map((dim) => { - const value = stride; - stride *= dim; - return value; - }).reverse(); - const indices = new Uint32Array(values.length); - for (let i = 0; i < dimensions; i++) { - const stride = strides[i]; - const dimension = data[i]; - for (let i = 0; i < indices.length; i++) { - indices[i] += dimension[i].toNumber() * stride; - } - } - context.data = this._decodeSparse(dataType, context.dimensions, indices, values); - context.encoding = '|'; - break; - } - default: { - switch (this._encoding) { - case '<': - case '>': { - context.data = (this._data instanceof Uint8Array || this._data instanceof Int8Array) ? this._data : this._data.peek(); - context.view = new DataView(context.data.buffer, context.data.byteOffset, context.data.byteLength); - if (view.Tensor.dataTypes.has(dataType)) { - const itemsize = view.Tensor.dataTypes.get(dataType); - const length = context.data.length; - const stride = context.stride; - if (length < (itemsize * shape.reduce((a, v) => a * v, 1))) { - const max = stride.reduce((a, v, i) => v > stride[i] ? i : a, 0); - if (length !== (itemsize * stride[max] * shape[max])) { - throw new Error('Invalid tensor data size.'); - } - } - context.itemsize = itemsize; - context.stride = stride.map((v) => v * itemsize); - } else if (dataType.startsWith('uint') && !isNaN(parseInt(dataType.substring(4), 10))) { - context.dataType = 'uint'; - context.bits = parseInt(dataType.substring(4), 10); - context.itemsize = 1; - } else if (dataType.startsWith('int') && !isNaN(parseInt(dataType.substring(3), 10))) { - context.dataType = 'int'; - context.bits = parseInt(dataType.substring(3), 10); - context.itemsize = 1; - } else { - throw new Error(`Tensor data type '${dataType}' is not implemented.`); - } - break; - } - case '|': { - context.data = this._values; - if (!view.Tensor.dataTypes.has(dataType) && dataType !== 'string' && dataType !== 'object') { - throw new Error(`Tensor data type '${dataType}' is not implemented.`); - } - const size = context.dimensions.reduce((a, v) => a * v, 1); - if (size !== this._values.length) { - throw new Error('Invalid tensor data length.'); - } - break; - } - default: { - throw new view.Tensor(`Unsupported tensor encoding '${this._encoding}'.`); - } - } - } - } - context.index = 0; - context.count = 0; - return context; - } - - _decodeSparse(dataType, dimensions, indices, values) { - const size = dimensions.reduce((a, b) => a * b, 1); - const array = new Array(size); - switch (dataType) { - case 'boolean': - array.fill(false); - break; - default: - array.fill(0); - break; - } - if (indices.length > 0) { - if (Object.prototype.hasOwnProperty.call(indices[0], 'low')) { - for (let i = 0; i < indices.length; i++) { - const index = indices[i].toNumber(); - array[index] = values[i]; - } - } else { - for (let i = 0; i < indices.length; i++) { - array[indices[i]] = values[i]; - } - } - } - return array; - } - - _decodeData(context, dimension, offset) { - const results = []; - const shape = context.dimensions.length === 0 ? [1] : context.dimensions; - const size = shape[dimension]; - const dataType = context.dataType; - const view = context.view; - const stride = context.stride[dimension]; - if (dimension === shape.length - 1) { - const ellipsis = (context.count + size) > context.limit; - const length = ellipsis ? context.limit - context.count : size; - const max = offset + (length * context.itemsize); - switch (dataType) { - case 'boolean': - for (; offset < max; offset += stride) { - results.push(view.getUint8(offset) !== 0); - } - break; - case 'qint8': - case 'xint8': - case 'int8': - for (; offset < max; offset += stride) { - results.push(view.getInt8(offset)); - } - break; - case 'qint16': - case 'int16': - for (; offset < max; offset += stride) { - results.push(view.getInt16(offset, this._littleEndian)); - } - break; - case 'qint32': - case 'int32': - for (; offset < max; offset += stride) { - results.push(view.getInt32(offset, this._littleEndian)); - } - break; - case 'int64': - for (; offset < max; offset += stride) { - results.push(view.getBigInt64(offset, this._littleEndian)); - } - break; - case 'int': - for (; offset < max; offset += stride) { - results.push(view.getIntBits(offset, context.bits, this._littleEndian)); - } - break; - case 'quint8': - case 'uint8': - for (; offset < max; offset += stride) { - results.push(view.getUint8(offset)); - } - break; - case 'quint16': - case 'uint16': - for (; offset < max; offset += stride) { - results.push(view.getUint16(offset, true)); - } - break; - case 'quint32': - case 'uint32': - for (; offset < max; offset += stride) { - results.push(view.getUint32(offset, true)); - } - break; - case 'uint64': - for (; offset < max; offset += stride) { - results.push(view.getBigUint64(offset, true)); - } - break; - case 'uint': - for (; offset < max; offset += stride) { - results.push(view.getUintBits(offset, context.bits, this._littleEndian)); - } - break; - case 'float16': - for (; offset < max; offset += stride) { - results.push(view.getFloat16(offset, this._littleEndian)); - } - break; - case 'float32': - for (; offset < max; offset += stride) { - results.push(view.getFloat32(offset, this._littleEndian)); - } - break; - case 'float64': - for (; offset < max; offset += stride) { - results.push(view.getFloat64(offset, this._littleEndian)); - } - break; - case 'bfloat16': - for (; offset < max; offset += stride) { - results.push(view.getBfloat16(offset, this._littleEndian)); - } - break; - case 'complex64': - for (; offset < max; offset += stride) { - results.push(view.getComplex64(offset, this._littleEndian)); - } - break; - case 'complex128': - for (; offset < max; offset += stride) { - results.push(view.getComplex128(offset, this._littleEndian)); - } - break; - case 'float8e4m3fn': - for (; offset < max; offset += stride) { - results.push(view.getFloat8e4m3(offset, true, false)); - } - break; - case 'float8e4m3fnuz': - for (; offset < max; offset += stride) { - results.push(view.getFloat8e4m3(offset, true, true)); - } - break; - case 'float8e5m2': - for (; offset < max; offset += stride) { - results.push(view.getFloat8e5m2(offset, false, false)); - } - break; - case 'float8e5m2fnuz': - for (; offset < max; offset += stride) { - results.push(view.getFloat8e5m2(offset, true, true)); - } - break; - default: - throw new Error(`Unsupported tensor data type '${dataType}'.`); - } - context.count += length; - if (ellipsis) { - results.push('...'); - } - } else { - for (let j = 0; j < size; j++) { - if (context.count >= context.limit) { - results.push('...'); - return results; - } - const nextOffset = offset + (j * stride); - results.push(this._decodeData(context, dimension + 1, nextOffset)); - } - } - if (context.dimensions.length === 0) { - return results[0]; - } - return results; - } - - _decodeValues(context, dimension, position) { - const results = []; - const shape = (context.dimensions.length === 0) ? [1] : context.dimensions; - const size = shape[dimension]; - const dataType = context.dataType; - const stride = context.stride[dimension]; - if (dimension === shape.length - 1) { - const ellipsis = (context.count + size) > context.limit; - const length = ellipsis ? context.limit - context.count : size; - const data = context.data; - for (let i = 0; i < length; i++) { - if (context.count > context.limit) { - results.push('...'); - return results; - } - switch (dataType) { - case 'boolean': - results.push(data[position] === 0 ? false : true); - break; - default: - results.push(data[position]); - break; - } - position += stride; - context.count++; - } - } else { - for (let i = 0; i < size; i++) { - if (context.count >= context.limit) { - results.push('...'); - return results; - } - const nextPosition = position + (i * stride); - results.push(this._decodeValues(context, dimension + 1, nextPosition)); - } - } - if (context.dimensions.length === 0) { - return results[0]; - } - return results; - } - - static _stringify(value, indentation, indent) { - if (Array.isArray(value)) { - const result = []; - result.push(`${indentation}[`); - const items = value.map((item) => view.Tensor._stringify(item, indentation + indent, indent)); - if (items.length > 0) { - result.push(items.join(',\n')); - } - result.push(`${indentation}]`); - return result.join('\n'); - } - if (value === null) { - return `${indentation}null`; - } - switch (typeof value) { - case 'boolean': - return indentation + value.toString(); - case 'string': - return `${indentation}"${value}"`; - case 'number': - if (value === Infinity) { - return `${indentation}Infinity`; - } - if (value === -Infinity) { - return `${indentation}-Infinity`; - } - if (isNaN(value)) { - return `${indentation}NaN`; - } - return indentation + value.toString(); - case 'bigint': - return indentation + value.toString(); - default: - if (value && value.toString) { - return indentation + value.toString(); - } - return `${indentation}(undefined)`; - } - } - - _read() { - if (this._encoding === undefined) { - this._encoding = this._tensor.encoding; - this._values = null; - switch (this._encoding) { - case undefined: - case '': - case '<': { - this._data = this._tensor.values; - this._encoding = '<'; - this._littleEndian = true; - break; - } - case '>': { - this._data = this._tensor.values; - this._encoding = '>'; - this._littleEndian = false; - break; - } - case '|': { - this._values = this._tensor.values; - this._encoding = '|'; - break; - } - default: { - throw new view.Error(`Unsupported tensor encoding '${this._encoding}'.`); - } - } - switch (this._layout) { - case 'sparse': - case 'sparse.coo': { - this._indices = this._tensor.indices; - this._values = this._tensor.values; - break; - } - default: { - break; - } - } - } - } - - get metrics() { - if (!this._metrics) { - const data = this.value; - this._metrics = Array.from(this._tensor.metrics || []); - const keys = new Set(this._metrics.map((metrics) => metrics.name)); - if (!keys.has('sparsity')) { - let zeros = 0; - let parameters = 0; - const stack = [data]; - while (stack.length > 0) { - const data = stack.pop(); - if (Array.isArray(data)) { - for (const element of data) { - stack.push(element); - } - } else { - zeros += data === 0 || data === 0n || data === ''; - parameters += 1; - } - } - const value = parameters > 0 ? zeros / parameters : 0; - const argument = new view.Argument('sparsity', value, 'percentage'); - this._metrics.push(argument); - } - } - return this._metrics; - } -}; - view.Quantization = class { constructor(quantization) { @@ -5368,6 +4849,42 @@ markdown.Generator = class { } }; +metrics.Tensor = class { + + constructor(tensor) { + this._tensor = tensor; + } + + get metrics() { + if (!this._metrics) { + const tensor = this._tensor; + const data = tensor.value; + this._metrics = Array.from(tensor.metrics || []); + const keys = new Set(this._metrics.map((metrics) => metrics.name)); + if (!keys.has('sparsity')) { + let zeros = 0; + let parameters = 0; + const stack = [data]; + while (stack.length > 0) { + const data = stack.pop(); + if (Array.isArray(data)) { + for (const element of data) { + stack.push(element); + } + } else { + zeros += data === 0 || data === 0n || data === ''; + parameters += 1; + } + } + const value = parameters > 0 ? zeros / parameters : 0; + const argument = new view.Argument('sparsity', value, 'percentage'); + this._metrics.push(argument); + } + } + return this._metrics; + } +}; + view.Context = class { constructor(context, identifier, stream) { diff --git a/test/worker.js b/test/worker.js index bef29d8698..4f2edc6ea3 100755 --- a/test/worker.js +++ b/test/worker.js @@ -640,7 +640,7 @@ export class Target { } if (value.initializer) { value.initializer.type.toString(); - const tensor = new view.Tensor(value.initializer); + const tensor = new base.Tensor(value.initializer); if (!this.tags.has('skip-tensor-value')) { if (tensor.encoding !== '<' && tensor.encoding !== '>' && tensor.encoding !== '|') { throw new Error(`Tensor encoding '${tensor.encoding}' is not implemented.`);